From Thames Valley District School Board, Codeforces
About
c a l c u l a t i n g t h e m e a n i n g o f l i f e
16139273220807160675859275
kylinTo Do List: el B, 6 D, gne, etw, ampi, tej, l (, - gar, e col, 2 - pa, ler co
Order of problem type best to worst:
- Graph Theory
 - Divide & Conquer
 - Math
 - Data Structures
 - DP
 - Interactive
 - String
 - Constructive
 - Geometry
 - Greedy
 - those confusing and annoying ad hoc problems...
 
note to self:
-3 mod 2 is -1 according to C++
(-1)/2 = 0 not -1 according to C++
In C++ vector size is unsigned long long so this:
(vector<int>{}).size() > -1is false even though0 > -1because it changes -1 to unsigned(a&b+c)=(a&(b+c)) not ((a&b)+c) according to C++
Good format?
1
2
3
4
5
a
a
a
a
a
a
a
Log
First 3 Point Solve - June 2019: Hello, World!
First 5 Point Solve - August 2019: CCC '00 J1 - Calendar
First 7 Point Solve - February 2020: TLE '17 Contest 8 P1 - Artificial Intelligence
First 10 Point Solve - November 2020: CCC '20 S2 - Escape Room
First 12 Point Solve - January 2022: CCC '18 S3 - RoboThieves ... wait what this got changed to 10 points
First 15 Point Solve - December 2021: CCC '12 S4 - A Coin Game
First 17 Point Solve - May 2022: CCC '17 S4 - Minimum Cost Flow
First 20 Point Solve - May 2022: CCC '16 S5 - Circle of Life
First 25 Point Solve - April 2025: APIO '11 P1 - Table Coloring ... ah nearly 3 years after my first 20 point solve
First 30 Point Solve - June 2025: IOI '14 P6 - Holiday (Standard I/O)
First 35 Point Solve - July 2025: CCO '25 P6 - Shopping Deals
First 40 Point Solve - September 2025: IOI '11 P5 - Dancing Elephants
First 45 Point Solve - :
First 50 Point Solve - :
yellow - Feb 25, 2025 . . . when rated contest :(
500 points - May 11, 2025
900 problems - June 14, 2025
600 points - July 12, 2025
1000 problems - September 16, 2025
700 points - October 19, 2025
How to waste 2 hours:
Let ~F(x)=\sum_{a=0}^{x} \sum_{b=0}^{x} \sum_{c=0}^{x} \sum_{d=0}^{x} \sum_{e=0}^{x} \sum_{f=0}^{x} \sum_{g=0}^{x} \sum_{h=0}^{x} (a^b)|(c^d)|(e^f)|(g^h)~ where | is the bitwise OR operator.
~F(626)^{F(439)} \mod 10^9+7 = ?~
is there a way to calculate
~F(n)~ better than
~O(n^3 \log{n})~?
̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎.̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎.̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎.̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎.̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎.̎̎̎̎̎̎̎̎̎.̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎.̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎.̎.̎.̎.̎.̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎.̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎.̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎.̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎.̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎.̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎.̎̎̎̎̎̎̎̎̎̎̎̎.̎.̎̎̎̎̎̎̎̎̎̎̎.̎̎̎̎̎.̎̎̎̎̎.̎̎̎̎̎.̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎.̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎.̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎.̎̎̎̎̎̎̎̎̎.̎̎̎̎̎̎̎̎.̎̎̎̎̎̎̎̎̎̎.̎̎̎̎̎̎̎̎.̎̎̎̎̎̎.̎̎̎̎̎̎̎̎̎̎̎̎̎̎̎
i have no idea what this is but it's
~interesting~
̎