Yet Another Contest 8 P3 - Herobrine

Time limit: 3.0s Memory limit: 1G Java: 5.0s Python: 5.0s

Andy is addicted to Minecraft. One day, he decides to download a new mod to enhance his gaming experience. The mod adds a million types of ores into the game, numbered from 1 to 10^6 , and requires a subset X of distinct ores to be chosen. The mod then provides two new crafting recipes:

- 1. Combine one ore of each type in X, and summon a Herobrine with power |X|, where |X| denotes the size of subset X.
- 2. Combine two Herobrines with powers A and B into a single Herobrine with power A + B.

Note that ingredients are destroyed once they are combined in a recipe.

Andy has to mine for these ores. The mine currently consists of N chambers labelled from 1 to N, and N tunnels labelled from 1 to N. The *i*-th chamber consists of M_i ores which Andy can mine, $O_{i,1}, O_{i,2}, \ldots, O_{i,M_i}$. The *i*-th tunnel connects chambers P_i and i ($P_i < i$), with the outside being considered as chamber 0.

Andy decides to begin mining in chamber C. Overhearing his plans, Josh decides to block the C-th tunnel with bedrock. Andy's only chance to escape is to summon a Herobrine to break the bedrock. Therefore, Andy decides to collect all the ores from chambers reachable from chamber C via unblocked tunnels, and to create a single Herobrine with the maximum possible power.

Mike would like to know the power of Andy's Herobrine, but as he is currently looting a village, he has no idea which chamber Andy is in. Therefore, he wants to know: for each value of C between 1 and N, across all possible subsets X_i what is the maximum possible power of Andy's Herobrine? Note that X may differ for different values of C.

Constraints

 $1 < N < 10^{6}$ $0 \leq M_i \leq 2 imes 10^6$ $1 \leq \sum\limits_{i=1}^{N} M_i \leq 2 imes 10^6$ $1 \le O_{i,i} \le 10^6$ $0 \leq P_i < i$ for all iSubtask 1 [20%] $1 \leq N \leq 1000$ $1 \le M_i \le 2000$ 00

$$1 \leq \sum\limits_{i=1}^{N} M_i \leq 20$$

Subtask 2 [40%]

 $P_i = i - 1$ for all i.

Subtask 3 [40%]

No additional constraints.

Input Specification

The first line contains one integer, N.

The second line contains N integers, P_1, P_2, \ldots, P_N .

The *i*-th of the following N lines contains one integer, M_i , followed by M_i integers, $O_{i,1}, O_{i,2}, \ldots, O_{i,M_i}$.

Output Specification

Output N lines. The *i*-th line should contain one integer, denoting the maximum possible power of Andy's Herobrine if C = i.

Sample Input

6	
01223	
012255	
4 1 1 2 2	
2122	
3 1 2 3	
2 2 3	
2 1 3	
4 1 7 7 4	
4 1 2 3 4	
3 1 3 4	

Sample Output

15			
9			
8			
2			
4			
3			

Explanation

Suppose C = 2, so that the second tunnel which connects chambers 1 and 2 is blocked with bedrock. Then, Andy can reach all chambers except chamber 1.

In total, Andy can mine 4 ores of type 1, 3 ores of type 2, 5 ores of type 3, and 2 ores of type 4.

If he chooses $X = \{1, 2, 3\}$, then he can create 3 Herobrines of power 3 using the first crafting recipe. Using the second crafting recipe, he can combine two Herobrines to form a Herobrine with power 3 + 3 = 6. Using the second crafting recipe again, he can combine the two remaining Herobrines to form a single Herobrine with power 3 + 6 = 9. It can be shown that this choice of X and this sequence of crafting operations is optimal.