Yet Another Contest 1 P4 - No More Searching

Time limit: 1.0s	Memory limit: 128M
Java: 4.0s	Java: 256M
Python: 2.0s	Python: 256M

Mike is growing tired of searching for strings, and has instead become interested in breaking them apart! Given a string S, he wants to break it into any number of subsequences. Each character in S should belong to exactly one subsequence.

The *i*-th letter in the English alphabet is assigned the value *i* (e.g. $A \rightarrow 1$, $B \rightarrow 2$, ..., $Z \rightarrow 26$).

For each subsequence, let v_{c_i} and v_{c_j} be the value of the first and last characters. Then, the score of the subsequence is equal to $(v_{c_i} - v_{c_j})(v_{c_i} + v_{c_j})$. Note that scores can be negative. For example, the sequence HELLO will have a score of (8-15)(8+15) = -161.

The total score of a string is equal to the sum of all the scores of its subsequences. To satisfy Mike's curiosity, you want to determine all the possible total scores for a given string.

Constraints

$1 \leq N \leq 250$

S only consists of uppercase letters $A \dots Z$.

Subtask 1 [10%]

 $1 \leq N \leq 5$

Subtask 2 [10%]

S only consists of uppercase letters (A) and (B).

Subtask 3 [30%]

 $1 \leq N \leq 50$

Subtask 4 [50%]

No additional constraints.

Input Specification

The first line contains one integer N, the length of the string.

The second line contains the string S.

Output Specification

On the first line, output a single integer M, the total number of possible scores.

On the next ${\cal M}$ lines, output the possible scores sorted in ascending order.

Sample Input 1

3	
-	
ADB	

Sample Output 1

4 -15 -3 0 12

Explanation for Sample Output 1

There are five possible ways to break up the string into subsequences:

AD B

The total score for the first arrangement is (1-4)(1+4) + (2-2)(2+2) = -15.

ABD

The total score for the second arrangement is (1-2)(1+2) + (4-4)(4+4) = -3.

A D B

The total score for the third arrangement is (1-1)(1+1) + (4-4)(4+4) + (2-2)(2+2) = 0.

A DB

The total score for the fourth arrangement is (1-1)(1+1) + (4-2)(4+2) = 12.

ADB

The total score for the fifth arrangement is (1-2)(1+2) = -3, which results in the same total score as the second arrangement.

Sample Input 2

3 AAC

Sample Output 2

2 -8 0

Explanation for Sample Output 2

One way to achieve a total score of -8 is by breaking the string into the following subsequences:

A AC

One way to achieve a total score of 0 is by breaking the string into the following subsequences:

AAC

Sample Input 3

4	
ABAB	

Sample Output 3

4		
-6		
-3		
0		
3		

Sample Input 4

4 JHVM

Sample Output 4

9			
400			
-489			
-120			
420			
-420 -384 -105			
105			
-105			
-69			
0			
36			
315			
351			
552			