Time limit: 0.6s
Java (latest): 1.5s
PyPy 3: 1.5sMemory limit: 512M

Given a N by N matrix, find the **maximum** sum of a main diagonal (/) and an antidiagonal (\), and if they intersect at a cell, subtract that cell because it is only counted once.

Note: For this problem, Python users are recommended to use PyPy over CPython.

Constraints

$3 \leq N \leq 2000$

The elements in the matrix are between 1 and $10\,000$, inclusive.

Subtask 1 [40%]

 $3 \leq N \leq 25$

Subtask 2 [60%]

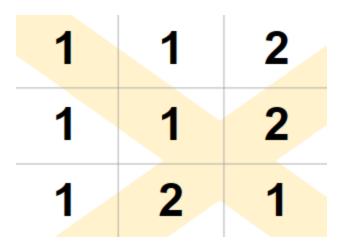
No additional constraints.

Input Specification

The first line of input contains a single integer, N, the number of rows and columns in the matrix.

The next N lines of input contain N space separated integers, the elements in the matrix.

Output Specification


Output a single integer, the **maximum** sum of a main diagonal (/) and an antidiagonal (\), minus their intersection if they intersect at a cell (intersection has integer coordinates inside the matrix).

Sample Input 1

Sample Output 1

Explanation for Sample Output 1

The 2 diagonals don't overlap so we just add their values: (1+1+1)+(2+2)=7

Sample Input 2

Sample Output 2

300

Explanation for Sample Output 2

The 2 diagonals overlap so we subtract the intersection, as it is only counted once: (1 + 99 + 100) + (1 + 99 + 99) - 99 = 300

1	1	100
1	99	2
1	2	99

Sample Input 3

4				
1	2	3	4	
1	2	99	99	3
1	2	3	2	
1	1	1	1	

Sample Output 3

1013

Explanation for Sample Output 3

The 2 diagonals don't overlap so we just add their values: (1+2+999+4)+(1+2+3+1)=1013

1	2	3	4
1	2	999	3
1	2	3	2
1	1	1	1

Sample Input 4

Sample Output 4

27

Explanation for Sample Output 4

The corners also count as a diagonals. (9+9)+9=27

1	1	9	1
1	1	1	9
1	1	1	1
1	1	1	9