# WC '18 Contest 4 S3 - Dance Royale

#### Time limit: 2.5s Memory limit: 128M

#### Woburn Challenge 2018-19 Round 4 - Senior Division

Billy is trying his hand at the latest popular game taking the world by storm: *Dance Royale*.

In Dance Royale, there are N  $(1 \le N \le 300\,000)$ locations on a map (numbered from 1 to N). Each location i has a destination number  $D_i$  $(0 \le D_i \le N, D_i \ne i)$ , which is used during gameplay (as described below).

There are also M  $(2 \le M \le 300\,000)$  players, with the i-th player beginning the game at location  $L_i$   $(1 \le L_i \le N)$ . Each player has some sick dance moves.



The game proceeds in sets of three phases as follows:

- 1. For each unordered pair of players still in the game, if they are currently at the same location and have not yet had a dance-off against one another, then they engage in a dance-off against one another. Nobody is harmed in the process, a good time is simply had.
- 2. For each player still in the game, let d be their current location's destination number. If d = 0, then they're forced to permanently leave the game. Otherwise, they move to location d.
- 3. If there are fewer than 2 players left in the game, then the game ends. Otherwise, the process repeats itself from phase 1.

Note that the game may last forever, which is fine — Billy is accustomed to extended periods of mental focus.

After the game has either ended or has gone on for an infinite amount of time, how many dance-offs will end up having taken place in total?

#### Subtasks

In test cases worth 6/28 of the points,  $N \le 50$ ,  $M \le 50$ , and  $D_i > 0$  for each i. In test cases worth another 6/28 of the points,  $N \le 2\,000$ , and  $D_i > 0$  for each i. In test cases worth another 10/28 of the points,  $D_i > 0$  for each i.

#### **Input Specification**

The first line of input consists of two space-separated integers, N and M. N lines follow, the *i*-th of which consists of a single integer,  $D_{ii}$  for  $i = 1 \dots N$ . M lines follow, the *i*-th of which consists of a single integer,  $L_{ii}$  for  $i = 1 \dots M$ .

# **Output Specification**

Output a single integer, the number of dance-offs which will take place.

# Sample Input 1

| 4 4 |  |
|-----|--|
| 4   |  |
| 3   |  |
| 1   |  |
| 3   |  |
| 4   |  |
| 2   |  |
| 3   |  |
| 4   |  |

# Sample Output 1

| 3 |   |  |
|---|---|--|
|   | ļ |  |

### Sample Input 2

| 5 6 |  |  |  |
|-----|--|--|--|
| 4   |  |  |  |
| 0   |  |  |  |
| 4   |  |  |  |
| 1   |  |  |  |
| 1   |  |  |  |
| 4   |  |  |  |
| 2   |  |  |  |
| 5   |  |  |  |
| 3   |  |  |  |
| 2   |  |  |  |
| 2   |  |  |  |
|     |  |  |  |

# Sample Output 2

#### **Sample Explanation**

In the first case:

- Right off the bat, a dance-off will occur between players 1 and 4, as they both occupy location 4.
- Then, in the second cycle of the phases, players 1, 2, and 4 will all find themselves at location 3, resulting in player 2 having dance-offs with both players 1 and 4. Note that players 1 and 4 will not repeat their dance-off against one another.
- The game will end up continuing forever with all 4 players in action, but no more dance-offs will ever take place.

In the second case:

- Right off the bat, dance-offs will occur between player pairs (2, 5), (2, 6), and (5, 6), due to players 2, 5, and 6 all occupying location 2. These 3 players will then leave the game in phase 2.
- Then, in the second cycle of the phases, players 1 and 3 will both find themselves at location 1 and will therefore have a dance-off.
- The game will end up continuing forever with 3 players remaining, but no more dance-offs will ever take place.