
Waterloo 2013 Fall B - Java vs. Scheme Smackdown

Edgar thinks he knows it all.

He has programmed in Java before, and he believes all numbers on a computer are stored inexactly. Moreover, Java
programs are mostly composed of dots: System.out.please.oh.please.println() for example. Edgar thinks that
all numbers between and in Java are stored only partially, and the rest of the number is a sequence of dots, since it

is Java. For example, the number is stored in Java as . However, after Edgar is enlightened by the beauty of

Scheme, he realizes that numbers can be stored exactly. He needs to rewrite his Java programs to use this exact
representation.

In order to make this task feasible, he assumes that the original fraction is always the simplest one that produces the
given sequence of digits; by simplest, he means the the one with smallest denominator. Also, he assumes that Java
always stores enough important digits; no digit from the repeating portion of the decimal expansion was left
unrecorded (even if this repeating portion was all zeroes).

Input Specification

There are several test cases. For each test case there is one line of input of the form where is a string of
1 to 9 digits, not all zero. A line containing 0 follows the last case. For each case, output the original fraction.

Note that an exact decimal fraction has two repeating expansions (e.g.).

Sample Input

0.2...
0.20...
0.474612399...
0

Sample Output

2/9
1/5
1186531/2500000

Time limit: 1.0s Memory limit: 64M

0 1

1

6
0.1666 …

0.dddd… dddd

1

5
= 0.2000 … = 0.19999 …

