
Waterloo 2013 Fall A - Compressed Words?

Steve has come up with a way to compress text, though it may not actually compress the text. Steve considers only
individual words, and uses the following rules to define a "compressed word":

1. a single, lower-case letter is a compressed word
2. where and are non-negative integers and is a compressed word.

You should observe that a compressed word of one character is the same as an uncompressed word. To uncompress the
compressed word we uncompress each , concatenate those uncompressed words into a new word, and
repeatedly concatenate that word times. For example:

x would be uncompressed as x ,
(t 3) would be uncompressed as ttt ,
(a (b c 2) 3) would be uncompressed as abcbcabcbcabcbc .

Write a program to uncompress a compressed word.

Input Specification

Your program will be tested on one or more test cases. Each test case is made of one correctly formed compressed word
on a separate line. A $ character identifies the end of line. The last line of the input, which is not part of the test cases,
contains a $ by itself (possibly with leading and/or trailing white spaces). Every compressed word in the input is
correct according to the rules specified above. Note that a compressed word may contain leading, trailing, and/or
embedded spaces. Such spaces should be ignored. Letters and numbers are separated from each other by at least one
space character.

Output Specification

For each test case (i.e., each compressed word), write the uncompressed word on a separate line. There should be no
spaces (other than newlines) in the output.

Sample Input

x$
(t 3)$
(a (b c 2) 3) $
$

Sample Output

Time limit: 1.0s Memory limit: 64M

(e1e2 … etn) t n ei

(e1e2 … etn) ei

n

x
ttt
abcbcabcbcabcbc

