Time limit: 1.0s Memory limit: 1G

You are given an array of N positive integers, $a_1, a_2, \ldots a_N$. Let the value of a collection of at least two numbers be the bitwise xor of its **second** minimum and **second** maximum. Determine the sum of the values of all **subsequences** of a which contain at least two elements. Since this value may be huge, output it modulo $10^9 + 7$.

Constraints

 $egin{aligned} 1 \leq N \leq 2 imes 10^5 \ 0 \leq a_i < 2^{30} \end{aligned}$

Subtask 1 [20%]

 $1 \leq N \leq 2\,000$

Subtask 2 [80%]

No additional constraints.

Input Specification

The first line contains one integer, N, the length of the array.

The next line contains N space-separated integers, a_1, a_2, \ldots, a_N , the array of positive integers.

Output Specification

Output one line containing one integer, the sum of the values of all subsequences which contain at least two elements, modulo $10^9 + 7$.

Sample Input 1

5 3 1 4 1 5

Sample Output 1

Explanation for Sample 1

The following are the values of every subsequence containing at least two elements:

Format:

 $s_{\geq 2}
ightarrow \min_2(s) \oplus \max_2(s) = v$

Where $s_{\geq 2}$ represents a subsequence of a containing at least two elements, \min_2 is the second minimum, \oplus is the bitwise xor operator, \max_2 is the second maximum, and v is the resulting value of $s_{\geq 2}$.

Subsequences with 3 elements are omitted since they all have a value of 0.

 $egin{aligned} [3,1,4,1] & o 1 \oplus 3 = 2 \ [3,1,4,5] & o 3 \oplus 4 = 7 \ [3,1,1,5] & o 1 \oplus 3 = 2 \ [3,4,1,5] & o 3 \oplus 4 = 7 \ [1,4,1,5] & o 1 \oplus 4 = 5 \end{aligned}$

 $[3,1,4,1,5]
ightarrow 1 \oplus 4 = 5$

Total value of all subsequences with at least two elements: 2+7+2+6+5+0+4+5+1+4+2+7+2+7+5+5 = 64

Sample Input 2

10 5 1 29 8 7 10 48 15 33 59

Sample Output 2

30210

Sample Input 3

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1000000000 1000000000

Sample Output 3

119486481

Explanation for Sample 3

Remember to output the answer modulo $10^9 + 7$.