TLE '17 Contest 6 P4 - Willson and Travelling

Time limit: 2.0s **Memory limit:** 640M Python: 8.0s

Willson the Canada Goose is like any other Canada Goose - he likes to fly around and practice honking.

Today, he will be flying around a city containing N buildings. Each building is a rectangle with a side parallel to the x axis. The lower left corner of the i^{th} building is at (p_i, q_i) , and the upper right corner is at (r_i, s_i) . A building can overlap with another building. It is possible for a building to be completely contained within another building. Also, it is possible that two different buildings represent the same rectangle.

However, corners are dangerous for Willson to fly into - much more dangerous than walls. A corner is an integer coordinate where exactly 1 of the 4 adjacent squares is contained within a building. The other 3 adjacent squares are not contained within a building.

Willson flying around a city while making his presence known.

Could you tell Willson the number of corners that he needs to look out for?

Constraints

$p_i < r_i$

$q_i < s_i$

Subtask	Points	N	Coordinate limits	
1	30	N=2	All coordinates satisfy $1 \leq c \leq 2000.$	
2	20	$1 \leq N \leq 30000$	All coordinates satisfy $1 \leq c \leq 2000.$	
3	30	$1 \leq N \leq 30000$	All coordinates satisfy $1 \leq c \leq 60000.$	
4	20	$1 \leq N \leq 200000$	All coordinates satisfy $1 \leq c \leq 500000.$	

Note: Python users are recommended to submit with PyPy. Also, Python users are recommended to optimize their memory usage.

Input Specification

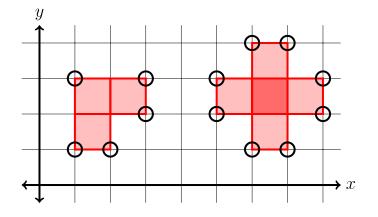
The first line of input will contain a single integer, N.

N lines of input follow. The i^{th} line will contain four integers $p_i q_i r_i s_i$. The lower left corner of the i^{th} building is at (p_i, q_i) , and the upper right corner is at (r_i, s_i) .

Output Specification

Output the number of corners that are formed by the buildings.

Sample Input


6			
1 1 2 2			
1 2 2 3			
2233			
6174			
5283			
6273			

Sample Output

13

Explanation for Sample Output

In the following diagram, the buildings are shown in red and the corners are shown in the black circles.

