Time limit: 0.1s **Memory limit:** 128M Java: 0.6s Python: 0.6s

The ZAFT are attacking the Orb Union! There are I stations, numbered from 1, 2, ..., I, that need to be defended. For it to be secure, the Orb Union needs to have at least N troops at each station. Unfortunately, due to the radar-jamming effects of the Neutron Jammer, the Orb Union cannot order their troops to move between stations. The Orb Union will send J waves of troops, each of which sends K troops to each of the stations $X_i, X_{i+1}, \ldots, X_f$. All stations start with 0 troops.

The Orb Union wants you to help them find the number of stations that are not secure.

Input Specification

The first line will contain the integer I $(1 \le I \le 10^5)$, the number of stations.

The second line will contain the integer $N~(1\leq N\leq 10^9)$, the minimum number of troops required to defend a station.

The third line will contain the integer J ($1 \le J \le 10^5$), the number of waves of troops.

The next J lines will contain 3 space-separated integers. These integers will be in the order X_{i} , $X_{f'}$, K $(1 \le X_i \le X_f \le I)$ $(1 \le K \le 10^4)$.

Output Specification

Output the total number of stations that have less than N troops.

Sample Input

4			
1			
3			
1 3 1			
2 3 2			
332			

Sample Output

Station 1 has 1 troop, station 2 has 3 troops, station 3 has 5 troops and station 4 has 0 troops. Station 4 is the only station with less than 1 troop, so the output is 1.