SAC '22 Code Challenge 3 Junior P3 - Normal Probabilities

Time limit: 1.0s Memory limit: 256M

After discovering the 5 normalized probabilities, Kevin Yang was awarded the Nobel Prize for mathematics.

With this discovery, Kevin can solve even more combinatorics problems.

One of the combinatorics problems entails a list of N events that each have a normalized probability P_i of occurring.

Since these are normalized probabilities, there are 5 types of probability:

- A corresponds to a 100% probability of occurring.
- B corresponds to an 80% probability of occurring.
- C corresponds to a 60% probability of occurring.
- D corresponds to a 40% probability of occurring.
- E corresponds to a 20% probability of occurring.

Kevin wants to know how likely it is that all these N events occur (assuming each event is independent) up to an error of 10^{-6} .

Constraints

 $1 \leq N \leq 100\,000$

 $P_i \in \{\texttt{A}, \texttt{B}, \texttt{C}, \texttt{D}, \texttt{E}\}$

Input Specification

The first line will contain N, the number of independent events.

The next N lines will contain P_i , one of the normalized probabilities (A, B, C, D, or E).

Output Specification

Output the probability of all N events occurring up to an error of 10^{-6} .

Sample Input 1

3			
А			
В			
В			

Sample Output 1

0.640000

Sample Input 2

1			
4			
R			
D			
C			
C			
D			
D			
F			
-			

Sample Output 2

0.038400