QCC P3 - Cohorts

Time limit: 2.0s Memory limit: 256M

Due to your superlative performance in online school, you've been employed by CodeVax. Your assignment is as such:

There are N seats in a line. These seats must be divided into exactly Q cohorts to reduce the transmission of the virus. Each cohort consists of a contiguous segment of exactly K seats. An arrangement of cohorts is considered to be valid if there is at least 1 seat between any two cohorts and no cohort overlaps another.

Find the total number of valid arrangements, modulo $998\,244\,353$.

Input Specification

The first line will contain the integer T, representing the number of test cases.

The next T lines will each contain the integers N_{i} , K_{i} and Q_{i} for the i^{th} test case.

Output Specification

For each test case, output the number of valid arrangements, modulo $998\,244\,353$.

Constraints

 $egin{aligned} &1 \leq N \leq 10^6 \ &1 \leq K \leq 10^6 \ &1 \leq Q \leq 5 imes 10^5 \ &1 \leq T \leq 10^5 \end{aligned}$

Note that you will NOT be required to pass all the samples to receive points.

Subtask 1 [5%]

 $1 \le T \le 400$

 $1 \le N \le 400$

K=1

Q=2

Subtask 2 [15%]

 $1 \leq T \leq 100$

 $1 \leq N \leq 100$

 $1 \leq Q \leq 100$

Subtask 3 [80%]

No additional constraints.

Sample Input 1

4			
3 1 1			
3 1 2			
1 1 2			
4 1 2			

Sample Output 1

3			
1			
0			
3			
			J

Explanation for Sample 1

Let x represent the spots in the line where the cohorts are and let - represent empty spaces in the line:

For the first test case, the valid cohort arrangements are: x - -, -x - -, and --x.

For the second test case, the only valid cohort arrangement is: x-x.

For the third test case, there are no valid cohort arrangements.

For the fourth test case, the valid cohort arrangements are: x-x-, x--x, and -x-x.

Sample Input 2

2 111 22 9 400 25 6

Sample Output 2