Time limit: 3.0s Memory limit: 512M

Frieren is analyzing a magic barrier, whose strength at specific points can be represented as a 2D grid, a, with N rows, M columns, and unique values. Specifically, the strength of the barrier on the r^{th} row and c^{th} column is $a_{r,c}$. She asks you Q questions in the form of (k, r_1, c_1, r_2, c_2) and your task for each of them is to determine whether k exists in the inclusive rectangle formed by a_{r_1,c_1} and a_{r_2,c_2} .

Note: Fast input is highly recommended for this problem. Also, Python users should submit with PyPy as it is significantly faster.

Constraints

All values of $a_{r,c}$ are unique.

- $1 \leq k, a_{r,c} \leq 10^9$
- $1 \leq r_1 \leq r_2 \leq N$

 $1 \leq c_1 \leq c_2 \leq M$

Subtask 1 [15%]

 $1 \leq N, M, Q \leq 10$

Subtask 2 [85%]

 $1 \leq N, M \leq 1000$

 $1 \leq Q \leq 2 imes 10^5$

Input Specification

The first line contains 3 integers, N, M, and Q.

The next N lines contain M integers each, representing the barrier strength $a_{r,c}$

The next Q lines contain 5 integers each, k, r_1, c_1, r_2, c_2 .

Output Specification

For each question, output yes if the k for that question exists in the given rectangle and no otherwise.

Sample Input 1

Sample Output 1

no yes no

Explanation for Sample Output 1

The rectangle for the first question is shown in blue. $10 \ {\rm is} \ {\rm not}$ inside it.

The rectangle for the second question is shown in yellow. 3 is inside it.

The rectangle for the third question is shown in yellow. 100 is not inside it (it's not even in the grid).

Sample Input 2

232		
1 2 3		
456		
1 1 1 1 1		
1 2 2 2 3		

Sample Output 2

yes			
2			
no			