OTHS Coding Competition 1 (Mock CCC) J5 - Scavenger Hunt

Time limit: 1.0s **Memory limit:** 512M Java: 3.0s Python: 5.0s

You are participating in a scavenger hunt in a city with N buildings (1-indexed) and M **two-way** roads connecting buildings a_i and b_i , taking c_i minutes to travel. You are currently in building 1 and your goal is to obtain K items labelled from 1 to K which are scattered across the city, **in order**. The i^{th} item will be present in k_i buildings. Building 1 is guaranteed to never contain any items and a building may contain more than 1 item. For each item, you also have the option to stand still and create it yourself in m_i minutes. What is the minimum amount of time you need to obtain all Kitems?

Constraints

 $egin{aligned} 1 &\leq N, M \leq 20\,000 \ 1 &\leq a_i, b_i \leq N \ a_i
eq b_i \ 1 &\leq c_i \leq 10^6 \ 1 &\leq m_i \leq 10^9 \ 1 &\leq K \leq 30 \ 1 &\leq k_i < N \end{aligned}$

Building 1 will never contain any items.

Subtask 1 [4/15]

 $k_i = 1$

A building will contain at most 1 item.

Subtask 2 [4/15]

 $m_i=10^9$

 $c_i \leq 10^3$

Subtask 3 [7/15]

No additional constraints.

Input Specification

The first line contains 3 integers, N, M, and K, the number of buildings, the number of roads, and the number of items you need to collect, respectively.

The next line contains K space separated integers, m_1, \ldots, m_K , where m_i is the time it takes to build item i yourself.

The next line contains K space separated integers, k_1, \ldots, k_K , where k_i is the number of buildings that contain item *i*.

The i^{th} of the next K lines contain k_i space separated integers, the buildings that contain item i.

The next M lines contain 3 space separated integers, a_i , b_i , and c_i , representing a two-way road between buildings a_i and b_i , taking c_i minutes to travel.

Output Specification

Output one integer, the minimum time it takes to obtain all K items in minutes.

Sample Input 1

Sample Output 1

20

Explanation for Sample Output 1

This sample case satisfies the condition of subtask 1.

The optimal way to obtain all items is:

- Create item 1 yourself.
- Go from building 1 to building 2.
- Go from building 2 to building 4. Collect item 2 here.
- Go from building 4 to building $2. \mbox{ Collect item } 3$ here.

In total, you take 9 + (3 + 4 + 4) = 20 minutes, which is the minimum time possible.

Sample Input 2

5 6 2	
100000000 100000000	
1 2	
3	
4 5	
1 2 1	
1 3 4	
2 3 2	
2 4 1	
3 5 6	
5 4 2	

Sample Output 2

6

Explanation for Sample Output 2

This sample case satisfies the condition of subtask 2.

The optimal way to obtain all items is:

- Go from building 1 to building 2.
- Go from building 2 to building 3. Collect item 1 here.
- Go from building 3 to building 2.
- Go from building 2 to building 4. Collect item 2 here.

In total, you take 1+2+2+1=6 minutes, which is the minimum time possible.

Sample Input 3

463			
2 2 5			
2 2 1			
231			
2 3			
234			
3			
124			
1 3 10			
236			
1 4 2			
2 4 3			
3 4 8			

Sample Output 3

9

Explanation for Sample Output 3

The optimal way to obtain all items is:

- Go from building 1 to building 2. Collect item 1 and 2 here.
- Create item 3 yourself.

In total, you take 4+5=9 minutes, which is the minimum time possible.