Time limit: 0.6s **Memory limit:** 128M Java 8: 1.0s

AQT is playing a game. The map in this game is a tree with N nodes and N - 1 edges. Since it's a tree, there is exactly one path to connect any two nodes. AQT has M weapons and the weapon i can block the path from node a_i to node b_i with a cost c_i . There are T monsters living in the tree. A monster j will travel from node u_j to node v_j . AQT can catch a monster if the path he blocks is an exact subpath of the monster's path. AQT can reuse his weapon, and the path is automatically unblocked after he catches a monster. However, AQT thinks this game is not challenging enough. For each monster j, he wants to use the k_j^{th} minimal cost weapon among all the weapons which can catch the monster j. Can you write a program to help him?

Input Specification

The first line contains 3 integers, N, M, and T (N, M, $T \le 40\,000$), which represent the number of nodes, the number of weapons, and the number of monsters, respectively.

Each of the following N-1 lines contains 2 integers, a and b $(1 \le a, b \le N)$, representing an edge between node a and node b.

Each of the following M lines contains 3 integers, a, b and c ($1 \le a, b \le N$ and $a \ne b$, $0 \le c \le 10^9$), representing a weapon which can block the path from node a to node b with a cost of c.

Each of the following T lines contains 3 integers, a, b and k $(1 \le a, b \le N)$, representing a monster's path from node a to node b and the k^{th} min cost weapon AQT wants to choose. It's guaranteed the k^{th} min cost weapon exists.

Output Specification

Output one line for each monster j, the k_j^{th} min cost to catch the monster j.

Sample Input 1

C A D			
642			
1 2			
2 3			
2 4			
3 5			
3 6			
152			
2 4 3			
3 6 5			
234			
561			
542			

Sample Output 1

5
4

Sample Input 2

LØ 10 10	
2 3	
5 6	
5 7	
7 8	
3 9	
9 10	
3 2 2	
10 7 1	
5 7 4	
5 8 5	
166	
3 3 3	
l0 4 10	
LØ 8 9	
927	
198	
L 8 5	
3 8 3	
3 8 4	
L 8 3	
¥ 8 1	
2 3 1	
2 3 1	
2 3 1	
2 4 1	
4 1	

Sample Output 2

6			
5			
6			
4			
4			
2			
2			
2			
2			
2			