Time limit: 4.0s Memory limit: 1G

In this problem, there are 3 subtasks.

Subtask 1

Given n 32-bit unsigned integers, sort them in nondecreasing order.

Subtask 2

There are 2n people playing "Rock,Paper,Scissors". They stand in two rows, and there are n people in each row. A player will use a fixed strategy for every game: for the j-th ($0 \le j < n$) player on the i-th ($i \in \{1, 2\}$) row, if we use an integer a_{ij} to describe his strategy, then 0 means the player will only use rock, 1 means the player will only use scissors, and 2 means the player will only use paper.

Now there are q queries. Each query specifies three integers x, y, l ($0 \le x, y < n, 1 \le l \le n - \max(x, y)$). You need to answer how many people in the first row will win if the $x \sim x + l - 1$ -th person in the first row plays the game with the $y \sim y + l - 1$ -th person on the second row.

More formally, "plays the game" here means for all i satisfying $0 \le i < l$, the x + i-th person on the first row plays "Rock,Paper,Scissors" with the y + i-th person on the second row.

Subtask 3

We say a parenthesis sequence is valid if it is a sequence that is (1) formed entirely by (and) (2) the numbers of (and) are equal (3) for any prefix, the number of (is no less than the number of). Now given a string formed by (,), and ?, compute the number of ways to replace each ? with (or) such that the parenthesis sequence is valid. We say two solutions are different if and only if there is at least one ? replaced with different parenthesis.

Input Format

This problem has a template. The first line of the input has an integer $task_{id}$ ($1 \le task_{id} \le 3$) denoting the subtask. Next is the specific input to a subtask. Two adjacent integers in the same line are separated by a space.

- Subtask 1: There is a line with two integers n, s. Let $a_0 = \text{next_integer}(s)$, $a_i = \text{next_integer}(a_{i-1})$, $1 \le i < n$. Then $a_0, a_1, \ldots, a_{n-1}$ is the n integers that shall be sorted.
- Subtask 2: The first line contains two integers n, q. In the second line, there is a string of length n consisting of 0,1,2. The *i*-th letter of the string denotes the strategy of the *i*-th person in the first row (i.e. a_{1i}). The third line has the same format as the second line. The third line denotes the strategies of the people on the second row.
- Subtask 3: The first line contains an integer *n* denoting the length of the string. The second line is the string.

Output Format

- Subtask 1: Let *b* be the sorted array. Call output arr(b, 4n) of 32-bit unsigned integers *b* (i.e. store into $b_0, b_1, \ldots, b_{q-1}$), and call output arr(b, 4q).
- Subtask 3: Output an integer denoting the number of possibilities modulo 2^{32} .

Sample Input 1

1 100000 2017012501

Sample Output 1

4275990336

Sample Input 2

2			
6 6			
200100			
200211			
5 3 1			
201			
203			
202			
2 3 3			
013			

Sample Output 2

3349208141

Sample Input 3

3		
4		
(???		

Sample Output 3

2

Sample Input 4

3 4)???

Sample Output 4

0

Constraints

In the original problem, the memory limit is 2 GB. Due to limitations of DMOJ, the memory limit has to be 1 GB and thus it is likely the 3rd test case is not solvable on DMOJ.

Subtask	Score	Test Case	Constraints
1	5	1	$n=10^5$
	19	2	$n=10^8$
	11	3	$n=2 imes 10^8$
2	7	4	$n=q=10^3$
	23	5	$n=q=3 imes 10^5$
3	9	6	$n=10^3$
	5	7	n=120000
	7	8	n=225000
	14	9	n=266666

Test Case 3

Template

```
#include <stdio.h>
#include <string.h>
#include <algorithm>
typedef unsigned int u32;
typedef unsigned long long u64;
inline u32 next_integer(u32 x) {
    x ^= x << 13;
    x ^= x >> 17;
    x ^= x << 5;
    return x;
}
bool output_arr(void *a, u32 size) {
    if (size % 4) {
        return puts("-1"), 0;
    }
    u32 blocks = size / 4;
    u32 *A = (u32 *)a;
    u32 ret = size;
    u32 x = 23333333;
    for (u32 i = 0; i < blocks; i++) {</pre>
        ret = ret ^{(A[i] + x)};
        x ^= x << 13;
        x ^= x >> 17;
        x ^= x << 5;
    }
    return printf("%u\n", ret), 1;
}
// ===== header ======
namespace Sorting {
void init_data(u32 *a, int n, u32 seed) {
    for (int i = 0; i < n; i++) {</pre>
        seed = next_integer(seed);
        a[i] = seed;
    }
}
void main() {
    int n;
    u32 seed;
    scanf("%d%u", &n, &seed);
```

```
u32 *a = new u32[n];
    init_data(a, n, seed);
   // sort(a, n);
    output_arr(a, n * sizeof(u32));
}
}
namespace Game {
void main() {
    int n, q;
    scanf("%d%d", &n, &q);
    char *s1 = new char[n + 1];
    char *s2 = new char[n + 1];
    scanf("%s%s", s1, s2);
    u32 *anss = new u32[q];
    int *q_x = new int[q];
   int *q_y = new int[q];
    int *q_len = new int[q];
    for (int i = 0; i < q; i++) {</pre>
        scanf("%d%d%d", q_x + i, q_y + i, q_len + i);
    }
    // solve(n, q, s1, s2, q_x, q_y, q_len, anss);
    output_arr(anss, q * sizeof(u32));
}
}
namespace Parentheses {
void main() {
    int n;
    scanf("%d", &n);
    char *s = new char[n + 1];
    scanf("%s", s);
    u32 ans;
    // ans = solve(n, s);
    printf("%u\n", ans);
}
}
```

```
int main() {
    int task_id;
    scanf("%d", &task_id);
    switch (task_id) {
        case 1:
            Sorting::main();
            break;
        case 2:
            Game::main();
            break;
        case 3:
            Parentheses::main();
            break;
    }
    return 0;
}
```