
NOI Winter Camp '17 P2: Challenge

In this problem, there are 3 subtasks.

Subtask 1

Given 32-bit unsigned integers, sort them in nondecreasing order.

Subtask 2

There are people playing "Rock,Paper,Scissors". They stand in two rows, and there are people in each row. A player will
use a fixed strategy for every game: for the -th () player on the -th () row, if we use an integer to
describe his strategy, then 0 means the player will only use rock, 1 means the player will only use scissors, and 2 means the
player will only use paper.

Now there are queries. Each query specifies three integers . You need to
answer how many people in the first row will win if the -th person in the first row plays the game with the

-th person on the second row.

More formally, "plays the game" here means for all satisfying , the -th person on the first row plays
"Rock,Paper,Scissors" with the -th person on the second row.

Subtask 3

We say a parenthesis sequence is valid if it is a sequence that is (1) formed entirely by (and) (2) the numbers of (

and) are equal (3) for any prefix, the number of (is no less than the number of) . Now given a string formed by (,
) , and ? , compute the number of ways to replace each ? with (or) such that the parenthesis sequence is valid.

We say two solutions are different if and only if there is at least one ? replaced with different parenthesis.

Input Format

This problem has a template. The first line of the input has an integer denoting the subtask. Next is
the specific input to a subtask. Two adjacent integers in the same line are separated by a space.

Subtask 1: There is a line with two integers . Let , , . Then
 is the integers that shall be sorted.

Subtask 2: The first line contains two integers . In the second line, there is a string of length consisting of 0,1,2. The
-th letter of the string denotes the strategy of the -th person in the first row (i.e.). The third line has the same

format as the second line. The third line denotes the strategies of the people on the second row.

Subtask 3: The first line contains an integer denoting the length of the string. The second line is the string.

Output Format

S bt k 1 L t b th t d C ll

Time limit: 4.0s Memory limit: 1G

n

2n n

j 0 ≤ j < n i i ∈ {1, 2} aij

q x, y, l (0 ≤ x, y < n, 1 ≤ l ≤ n − max(x, y))

x ∼ x + l − 1

y ∼ y + l − 1

i 0 ≤ i < l x + i

y + i

taskid (1 ≤ taskid ≤ 3)

n, s a0 = next_integer(s) ai = next_integer(ai−1) 1 ≤ i < n

a0, a1, … , an−1 n

n, q n

i i a1i

n

b t t (b 4)

Subtask 1: Let be the sorted array. Call .Subtask 2: Store the answers to the queries in an array of 32-bit unsigned integers (i.e. store into), and
call .

Subtask 3: Output an integer denoting the number of possibilities modulo .

Sample Input 1

1
100000 2017012501

Sample Output 1

4275990336

Sample Input 2

2
6 6
200100
200211
5 3 1
2 0 1
2 0 3
2 0 2
2 3 3
0 1 3

Sample Output 2

3349208141

Sample Input 3

3
4
(???

b output_arr(b, 4n) b b0, b1, … , bq−1

output_arr(b, 4q)

232

Sample Output 3

2

Sample Input 4

3
4
)???

Sample Output 4

0

Constraints

In the original problem, the memory limit is 2 GB. Due to limitations of DMOJ, the memory limit has to be 1 GB and
thus it is likely the 3rd test case is not solvable on DMOJ.

Subtask Score Test Case Constraints

1 5 1

19 2

11 3

2 7 4

23 5

3 9 6

5 7

7 8

14 9

Test Case 3

n = 105

n = 108

n = 2 × 108

n = q = 103

n = q = 3 × 105

n = 103

n = 120 000

n = 225 000

n = 266 666

1
200000000 2017012503

Template

#include <stdio.h>
#include <string.h>
#include <algorithm>

typedef unsigned int u32;
typedef unsigned long long u64;

inline u32 next_integer(u32 x) {
 x ^= x << 13;
 x ^= x >> 17;
 x ^= x << 5;
 return x;
}

bool output_arr(void *a, u32 size) {
 if (size % 4) {
 return puts("-1"), 0;
 }

 u32 blocks = size / 4;
 u32 *A = (u32 *)a;
 u32 ret = size;
 u32 x = 23333333;
 for (u32 i = 0; i < blocks; i++) {
 ret = ret ^ (A[i] + x);
 x ^= x << 13;
 x ^= x >> 17;
 x ^= x << 5;
 }

 return printf("%u\n", ret), 1;
}

// ===== header ======

namespace Sorting {
void init_data(u32 *a, int n, u32 seed) {
 for (int i = 0; i < n; i++) {
 seed = next_integer(seed);
 a[i] = seed;
 }
}

void main() {
 int n;
 u32 seed;
 scanf("%d%u", &n, &seed);

 u32 *a = new u32[n];
 init_data(a, n, seed);

 // sort(a, n);

 output_arr(a, n * sizeof(u32));
}
}

namespace Game {
void main() {
 int n, q;
 scanf("%d%d", &n, &q);

 char *s1 = new char[n + 1];
 char *s2 = new char[n + 1];
 scanf("%s%s", s1, s2);

 u32 *anss = new u32[q];
 int *q_x = new int[q];
 int *q_y = new int[q];
 int *q_len = new int[q];

 for (int i = 0; i < q; i++) {
 scanf("%d%d%d", q_x + i, q_y + i, q_len + i);
 }

 // solve(n, q, s1, s2, q_x, q_y, q_len, anss);

 output_arr(anss, q * sizeof(u32));
}
}

namespace Parentheses {
void main() {
 int n;
 scanf("%d", &n);

 char *s = new char[n + 1];
 scanf("%s", s);

 u32 ans;
 // ans = solve(n, s);

 printf("%u\n", ans);
}
}

int main() {
 int task_id;
 scanf("%d", &task_id);

 switch (task_id) {
 case 1:
 Sorting::main();
 break;
 case 2:
 Game::main();
 break;
 case 3:
 Parentheses::main();
 break;
 }

 return 0;
}

