Time limit: 2.0s Memory limit: 256M

You are given a $6 \times n$ grid, where each lattice point is labelled by a (not necessarily distinct) non-negative integer. There are two types of operations:

- 1. Change the label of a lattice point to another non-negative integer.
- 2. Find the shortest path between two lattice points.

Here the length of a path is defined as the sum of labels of all lattice points the path passes through, and two lattice points are adjacent if they have Manhattan distance 1 (i.e. $(x_1, y_1) \sim (x_2, y_2)$ if $|x_1 - x_2| + |y_1 - y_2| = 1$).

Input Specification

The first line of input will contain a single integer, n.

The next 6 lines will contain n integers each, where the jth integer in the (i + 1)th row is the label of (i, j). The following line will contain a single integer, Q, the number of operations. The operations will be one of the following:

- $1 \times y \in C$: The label of (x, y) is changed to c, where $1 \le x \le 6$, $1 \le y \le n$, $0 \le c \le 10\,000$.
- 2 x1 y1 x2 y2: Output the length of the shortest path between (x_1, y_1) and (x_2, y_2) , as defined above, where $1 \le x_1, x_2 \le 6, 1 \le y_1, y_2 \le n$.

Output Specification

For each type 2 operation, output the length of the shortest path between (x_1, y_1) and (x_2, y_2) on a new line.

Sample Input

5 $0 0 1 0 0$ $0 1 0 1 0$ $0 2 0 1 0$ $0 1 1 0$ $0 0 0 0 0$ $1 1 1 1 1$ 5 $2 1 2 1 4$ $1 1 1000$ $2 1 2 1 4$ $1 2 3 1000$ $2 1 2 3 3$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5		
0 1 0 1 0 0 2 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 5 2 1 2 1 4 1 1 1 1000 2 1 2 1 4 1 2 3 1000 2 1 2 3 3	001	00)
0 2 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 5 2 1 2 1 4 1 1 1 1000 2 1 2 1 4 1 2 3 1000 2 1 2 3 3	010	10)
0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 5 2 1 2 1 4 1 1 1 1000 2 1 2 1 4 1 2 3 1000 2 1 2 3 3	020	10)
0 0 0 0 0 0 1 1 1 1 1 5 2 1 2 1 4 1 1 1000 2 1 2 1 4 1 2 3 1000 2 1 2 3 3	011	10)
1 1 1 1 1 1 5 2 1 2 1 4 1 1 1 1000 2 1 2 1 4 1 2 3 1000 2 1 2 3 3	000	00)
5 2 1 2 1 4 1 1 1 1000 2 1 2 1 4 1 2 3 1000 2 1 2 3 3	111	1 1	
2 1 2 1 4 1 1 1 1000 2 1 2 1 4 1 2 3 1000 2 1 2 3 3	5		
1 1 1 1000 2 1 2 1 4 1 2 3 1000 2 1 2 3 3	212	14	Ļ
2 1 2 1 4 1 2 3 1000 2 1 2 3 3	111	1000	00
1 2 3 1000 2 1 2 3 3	212	14	
21233	123	1000	00
	212	33	

0

1

2

Constraints

Case	n	Q
1	10	20
2	100	200
3	1000	2000
4	10 000	20000
5	10 000	20000
6	10 000	30 000
7	35000	30 000
8	50000	50000
9	100 000	60 000
10	100 000	100 000