NOIP '07 P1 - Counting Numbers

Time limit: 1.0s Memory limit: 128M

A scientific survey obtained n natural numbers, each one at most $1\,500\,000\,000$ ($1.5 imes10^9$).

We know that there are at most $10\,000$ distinct numbers.

We want to count how many times each number appear, and output them in increasing order of the numbers.

Input Specification

Line 1 contains n, the number of numbers, denoting the total number of numbers.

Lines 2 to n+1 contain a number per line, denoting each number.

Output Specification

Output *m* lines (*m* being the number of distinct numbers). Each contain two numbers, the value and the frequency.

Sample Input

8				
2				
4				
2				
4				
5				
10	0			
2				
10	0			

Sample Output

2 3		
4 2		
5 1		
100 2		

Constraints

All data satisfy $1 \leq n \leq 200\,000$, each number is at most $1\,500\,000\,000$ ($1.5 imes10^9$).

40% of the data satisfy $1 \leq n \leq 10\,000.$

80% of the data satisfy $1 \leq n \leq 50\,000.$