Time limit: 0.6s Memory limit: 16M

National Olympiad in Informatics, China, 1999

Given 7 positive integers N, $A_{0'}$, $B_{0'}$, $L_{0'}$, $A_{1'}$, $B_{1'}$, $L_{1'}$ determine a 01 sequence $S = s_1 s_2 \dots s_i \dots s_{N'}$ such that:

- 1. $s_i=0$ or $s_i=1$ for $1\leq i\leq N$.
- 2. For any of S's length L_0 consecutive subsequence $s_j s_{j+1} \dots s_{j+L_0-1}$, the number of 0's must be between A_0 and B_0 , inclusive.
- 3. For any of S's length L_1 consecutive subsequence $s_j s_{j+1} \dots s_{j+L_1-1}$, the number of 1's must be between A_1 and B_1 , inclusive.

For example, if N = 6, $A_0 = 1$, $B_0 = 2$, $L_0 = 3$, $A_1 = 1$, $B_1 = 1$, $L_1 = 2$, then a sequence that satisfies the above conditions is S = 010101.

Input Specification

The input will consist of one line with 7 space-separated positive integers, the values N, A_0 , B_0 , L_0 , A_1 , B_1 , L_1 $(3 \le N \le 1\,000, 1 \le A_0 \le B_0 \le L_0 \le N, 1 \le A_1 \le B_1 \le L_1 \le N)$.

Output Specification

The output should consist of one line. If there does not exist a 01 sequence satisfying the above conditions, then output -1. Otherwise, output any 01 sequence that satisfies the conditions.

Sample Input

6 1 2 3 1 1 2

Sample Output

010101

Problem translated to English by Alex.