
NOI '23 P3 - Depth First Search

Depth-first search is a common search algorithm. Using this algorithm, we can obtain a tree  from an undirected
connected graph  with no self-loops nor parallel edges, and a certain starting point .

The algorithm can be described as follows:

Set the stack  to be empty, and let , which means that the edge set of  is initially empty.
First, push the starting point  into .
Visit the top vertex  of the stack and mark u as "visited".
If there is a vertex  adjacent to u and not yet visited, arbitrarily select one from these vertices and let  be
added to the edge set of . Then, push  into the stack , and go back to step . If there is no such vertex, pop 
out of the stack.

It can be proved that when  is a connected graph, the algorithm will obtain a certain spanning tree  of . However,
the tree  obtained by the algorithm may not be unique, depending on the search order, i.e., the vertex selected in step
4. If a specific search order can be chosen so that the tree obtained by the algorithm is exactly , then we call  an -dfs
tree of  with respect to the starting point .

Now, given a tree  with  vertices labeled from  to , and an additional  edges, we guarantee that these  edges
are distinct and connect different vertices, and are different from the  tree edges in . We call these additional 
edges non-tree edges. Among these  vertices, we specify exactly  vertices as special vertices.

Now, you want to know how many ways there are to select a subset of these  non-tree edges (you can possibly select
none) such that: after the tree edges of  and the selected non-tree edges are combined to form a graph , there exists
a special vertex  such that  is an -dfs tree of .

Since the answer may be very large, you only need to output the number of solutions modulo .

Input Specification

The first line of input contains an integer , which represents the test case number.  represents that this test case is
a sample test.

The second line of input contains three positive integers , which represent the number of vertices, the number of
non-tree edges, and the number of critical points, respectively.

Then  lines follow, each containing two positive integers , representing a tree edge of . It is guaranteed that
these  edges form a tree.

Then  lines follow, each containing two positive integers , representing a non-tree edge. It is guaranteed that 
does not coincide with an edge on the tree and there are no duplicate edges.

The last line of input contains  positive integers , representing the labels of the  special vertices. It is
guaranteed that  are distinct from each other.

Time limit: 6.0s  Memory limit: 512M

T

G = (V , E) s

S T = (V , ∅) T

s S

u

v (u, v)

T v S 3 u

G T G

T

T T s

G s

T n 1 n m m

n − 1 T m

n k

m

T G

s T s G

(109 + 7)

c c = 0

n, m, k

n − 1 u, v T

n − 1

m a, b (a, b)

k s1, s2, . . . , sk k

s1, s2, . . . , sk



Output Specification

Output a line containing an integer, representing the number of solutions, taken modulo .

Sample Input 1

0
4 2 2
1 2
2 3
3 4
1 3
2 4
2 3

Sample Output 1

3

Explanation for Sample Output 1

In this sample, there are three ways to select the non-tree edges: selecting only the edge , selecting only the edge
, or not selecting any non-tree edges. If we select only the edge , or do not select any non-tree edges, we can

show that  is a -dfs tree of . The specified search order is as follows:

Put  into the stack . At this time, .
Mark  as "visited".
Since  is adjacent to  and  is "unvisited", put  into the stack  and add  to tree . At this time, .
Mark  as "visited".
Since  is adjacent to  and  is "unvisited", put  into stack  and add  to tree . At this time, .
Since all the vertices adjacent to  are "visited", pop  off the stack. At this time, .
Since all the vertices adjacent to  are "visited", pop  off the stack. At this time, .
Since  is adjacent to  and  is "unvisited", put  into stack  and add  to tree T. At this time, .
Since all the vertices adjacent to  are "visited", pop  off the stack. At this time, .
Since all the vertices adjacent to  are "visited", pop  off the stack and  becomes empty again.

If we select only the edge , we can show that  is a -dfs tree of . The specified search order is as follows:

Put  into stack . At this time, .
Mark  as "visited".
Since  is adjacent to  and  is "unvisited", put  into the stack , and add  to tree . At this time, .
Mark  as "visited".
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Since  is adjacent to  and  is "unvisited", put  into the stack , and add  to tree . At this time,
.

Since all the neighboring vertices of  are "visited", pop  out of the stack. At this time, .
Since all the neighboring vertices of  are "visited", pop  out of the stack. At this time, .
Since  is adjacent to  and  is "unvisited", put  into the stack , and add  to tree T. At this time, .
Since all the neighboring vertices of  are "visited", pop  out of the stack. At this time, .
Since all the neighboring vertices of  are "visited", pop  out of the stack and  becomes empty again.

Additional Samples

Sample inputs and outputs can be found here.

Sample 2 ( ex_dfs2.in  and ex_dfs2.ans ) corresponds to test cases 4-6.
Sample 3 ( ex_dfs3.in  and ex_dfs3.ans ) corresponds to test cases 10-11.
Sample 4 ( ex_dfs4.in  and ex_dfs4.ans ) corresponds to test cases 12-13.
Sample 5 ( ex_dfs5.in  and ex_dfs5.ans ) corresponds to test cases 14-16.
Sample 6 ( ex_dfs6.in  and ex_dfs6.ans ) corresponds to test cases 23-25.

Problem Constraints

For all test data, it is guaranteed that: .

Test ID Additional Constraints

None

A

B

None

A

B

None

Additional Constraint A: It is guaranteed that in , vertex  is connected to vertex  .

Additional Constraint B: It is guaranteed that if the edges of  are combined with all  non-tree edges to form a graph
, then  is an -dfs tree of .
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https://dmoj.algome.me/data/cnnoi/23/noi23p3/samples.zip

