
NOI '23 P3 - Depth First Search

Depth-first search is a common search algorithm. Using this algorithm, we can obtain a tree from an undirected
connected graph with no self-loops nor parallel edges, and a certain starting point .

The algorithm can be described as follows:

Set the stack to be empty, and let , which means that the edge set of is initially empty.
First, push the starting point into .
Visit the top vertex of the stack and mark u as "visited".
If there is a vertex adjacent to u and not yet visited, arbitrarily select one from these vertices and let be
added to the edge set of . Then, push into the stack , and go back to step . If there is no such vertex, pop
out of the stack.

It can be proved that when is a connected graph, the algorithm will obtain a certain spanning tree of . However,
the tree obtained by the algorithm may not be unique, depending on the search order, i.e., the vertex selected in step
4. If a specific search order can be chosen so that the tree obtained by the algorithm is exactly , then we call an -dfs
tree of with respect to the starting point .

Now, given a tree with vertices labeled from to , and an additional edges, we guarantee that these edges
are distinct and connect different vertices, and are different from the tree edges in . We call these additional
edges non-tree edges. Among these vertices, we specify exactly vertices as special vertices.

Now, you want to know how many ways there are to select a subset of these non-tree edges (you can possibly select
none) such that: after the tree edges of and the selected non-tree edges are combined to form a graph , there exists
a special vertex such that is an -dfs tree of .

Since the answer may be very large, you only need to output the number of solutions modulo .

Input Specification

The first line of input contains an integer , which represents the test case number. represents that this test case is
a sample test.

The second line of input contains three positive integers , which represent the number of vertices, the number of
non-tree edges, and the number of critical points, respectively.

Then lines follow, each containing two positive integers , representing a tree edge of . It is guaranteed that
these edges form a tree.

Then lines follow, each containing two positive integers , representing a non-tree edge. It is guaranteed that
does not coincide with an edge on the tree and there are no duplicate edges.

The last line of input contains positive integers , representing the labels of the special vertices. It is
guaranteed that are distinct from each other.

Time limit: 6.0s Memory limit: 512M

T

G = (V , E) s

S T = (V , ∅) T

s S

u

v (u, v)

T v S 3 u

G T G

T

T T s

G s

T n 1 n m m

n − 1 T m

n k

m

T G

s T s G

(109 + 7)

c c = 0

n, m, k

n − 1 u, v T

n − 1

m a, b (a, b)

k s1, s2, . . . , sk k

s1, s2, . . . , sk

Output Specification

Output a line containing an integer, representing the number of solutions, taken modulo .

Sample Input 1

0
4 2 2
1 2
2 3
3 4
1 3
2 4
2 3

Sample Output 1

3

Explanation for Sample Output 1

In this sample, there are three ways to select the non-tree edges: selecting only the edge , selecting only the edge
, or not selecting any non-tree edges. If we select only the edge , or do not select any non-tree edges, we can

show that is a -dfs tree of . The specified search order is as follows:

Put into the stack . At this time, .
Mark as "visited".
Since is adjacent to and is "unvisited", put into the stack and add to tree . At this time, .
Mark as "visited".
Since is adjacent to and is "unvisited", put into stack and add to tree . At this time, .
Since all the vertices adjacent to are "visited", pop off the stack. At this time, .
Since all the vertices adjacent to are "visited", pop off the stack. At this time, .
Since is adjacent to and is "unvisited", put into stack and add to tree T. At this time, .
Since all the vertices adjacent to are "visited", pop off the stack. At this time, .
Since all the vertices adjacent to are "visited", pop off the stack and becomes empty again.

If we select only the edge , we can show that is a -dfs tree of . The specified search order is as follows:

Put into stack . At this time, .
Mark as "visited".
Since is adjacent to and is "unvisited", put into the stack , and add to tree . At this time, .
Mark as "visited".

(109 + 7)

(1, 3)

(2, 4) (1, 3)

T 3 G

3 S S = [3]

3

3 2 2 2 S (3, 2) T S = [3, 2]

2

2 1 1 1 S (2, 1) T S = [3, 2, 1]

1 1 S = [3, 2]

2 2 S = [3]

3 4 4 4 S (3, 4) S = [3, 4]

4 4 S = [3]

3 3 S

(2, 4) T 2 G

2 S S = [2]

2

2 3 3 3 S (2, 3) T S = [2, 3]

3

Since is adjacent to and is "unvisited", put into the stack , and add to tree . At this time,
.

Since all the neighboring vertices of are "visited", pop out of the stack. At this time, .
Since all the neighboring vertices of are "visited", pop out of the stack. At this time, .
Since is adjacent to and is "unvisited", put into the stack , and add to tree T. At this time, .
Since all the neighboring vertices of are "visited", pop out of the stack. At this time, .
Since all the neighboring vertices of are "visited", pop out of the stack and becomes empty again.

Additional Samples

Sample inputs and outputs can be found here.

Sample 2 (ex_dfs2.in and ex_dfs2.ans) corresponds to test cases 4-6.
Sample 3 (ex_dfs3.in and ex_dfs3.ans) corresponds to test cases 10-11.
Sample 4 (ex_dfs4.in and ex_dfs4.ans) corresponds to test cases 12-13.
Sample 5 (ex_dfs5.in and ex_dfs5.ans) corresponds to test cases 14-16.
Sample 6 (ex_dfs6.in and ex_dfs6.ans) corresponds to test cases 23-25.

Problem Constraints

For all test data, it is guaranteed that: .

Test ID Additional Constraints

None

A

B

None

A

B

None

Additional Constraint A: It is guaranteed that in , vertex is connected to vertex .

Additional Constraint B: It is guaranteed that if the edges of are combined with all non-tree edges to form a graph
, then is an -dfs tree of .

3 4 4 4 S (3, 4) T

S = [2, 3, 4]

4 4 S = [2, 3]

3 3 S = [2]

2 1 1 1 S (2, 1) S = [2, 1]

1 1 S = [2]

2 2 S

1 ≤ k ≤ n ≤ 5 ⋅ 105, 1 ≤ m ≤ 5 ⋅ 105

n ≤ m ≤ k ≤

1 ∼ 3 15 15 n

4 ∼ 6 6 6 6

7 ∼ 9 300 300

10 ∼ 11 n

12 ∼ 13

14 ∼ 16

17 ∼ 18 2 ⋅ 105 2 ⋅ 105

19 ∼ 21

22

23 ∼ 25 5 ⋅ 105 5 ⋅ 105

T i i + 1 (1 ≤ i < n)

T m

G T 1 G

https://dmoj.algome.me/data/cnnoi/23/noi23p3/samples.zip

