Time limit: 6.0s Memory limit: 512M

Depth-first search is a common search algorithm. Using this algorithm, we can obtain a tree T from an undirected connected graph G = (V, E) with no self-loops nor parallel edges, and a certain starting point s.

The algorithm can be described as follows:

- Set the stack S to be empty, and let $T = (V, \emptyset)$, which means that the edge set of T is initially empty.
- First, push the starting point *s* into *S*.
- Visit the top vertex *u* of the stack and mark u as "visited".
- If there is a vertex v adjacent to u and not yet visited, arbitrarily select one from these vertices and let (u, v) be added to the edge set of T. Then, push v into the stack S, and go back to step 3. If there is no such vertex, pop u out of the stack.

It can be proved that when G is a connected graph, the algorithm will obtain a certain spanning tree T of G. However, the tree T obtained by the algorithm may not be unique, depending on the search order, i.e., the vertex selected in step 4. If a specific search order can be chosen so that the tree obtained by the algorithm is exactly T, then we call T an s-dfs tree of G with respect to the starting point s.

Now, given a tree T with n vertices labeled from 1 to n, and an additional m edges, we guarantee that these m edges are distinct and connect different vertices, and are different from the n - 1 tree edges in T. We call these additional m edges non-tree edges. Among these n vertices, we specify exactly k vertices as special vertices.

Now, you want to know how many ways there are to select a subset of these m non-tree edges (you can possibly select none) such that: after the tree edges of T and the selected non-tree edges are combined to form a graph G, there exists a special vertex s such that T is an s-dfs tree of G.

Since the answer may be very large, you only need to output the number of solutions modulo $(10^9 + 7)$.

Input Specification

The first line of input contains an integer c, which represents the test case number. c = 0 represents that this test case is a sample test.

The second line of input contains three positive integers n, m, k, which represent the number of vertices, the number of non-tree edges, and the number of critical points, respectively.

Then n-1 lines follow, each containing two positive integers u, v, representing a tree edge of T. It is guaranteed that these n-1 edges form a tree.

Then m lines follow, each containing two positive integers a, b, representing a non-tree edge. It is guaranteed that (a, b) does not coincide with an edge on the tree and there are no duplicate edges.

The last line of input contains k positive integers s_1, s_2, \ldots, s_k , representing the labels of the k special vertices. It is guaranteed that s_1, s_2, \ldots, s_k are distinct from each other.

Output Specification

Output a line containing an integer, representing the number of solutions, taken modulo $(10^9 + 7)$.

Sample Input 1

0			
422			
1 2			
2 3			
3 4			
1 3			
2 4			
2 3			

Sample Output 1

3

Explanation for Sample Output 1

In this sample, there are three ways to select the non-tree edges: selecting only the edge (1, 3), selecting only the edge (2, 4), or not selecting any non-tree edges. If we select only the edge (1, 3), or do not select any non-tree edges, we can show that T is a 3-dfs tree of G. The specified search order is as follows:

- Put 3 into the stack S. At this time, S = [3].
- Mark 3 as "visited".
- Since 3 is adjacent to 2 and 2 is "unvisited", put 2 into the stack S and add (3, 2) to tree T. At this time, S = [3, 2].
- Mark 2 as "visited".
- Since 2 is adjacent to 1 and 1 is "unvisited", put 1 into stack S and add (2, 1) to tree T. At this time, S = [3, 2, 1].
- Since all the vertices adjacent to 1 are "visited", pop 1 off the stack. At this time, S = [3, 2].
- Since all the vertices adjacent to 2 are "visited", pop 2 off the stack. At this time, S = [3].
- Since 3 is adjacent to 4 and 4 is "unvisited", put 4 into stack S and add (3,4) to tree T. At this time, S = [3,4].
- Since all the vertices adjacent to 4 are "visited", pop 4 off the stack. At this time, S = [3].
- Since all the vertices adjacent to 3 are "visited", pop 3 off the stack and S becomes empty again.

If we select only the edge (2, 4), we can show that T is a 2-dfs tree of G. The specified search order is as follows:

- Put 2 into stack S. At this time, S = [2].
- Mark 2 as "visited".
- Since 2 is adjacent to 3 and 3 is "unvisited", put 3 into the stack S, and add (2,3) to tree T. At this time, S = [2,3].
- Mark 3 as "visited".

- Since 3 is adjacent to 4 and 4 is "unvisited", put 4 into the stack S, and add (3, 4) to tree T. At this time, S = [2, 3, 4].
- Since all the neighboring vertices of 4 are "visited", pop 4 out of the stack. At this time, S = [2, 3].
- Since all the neighboring vertices of 3 are "visited", pop 3 out of the stack. At this time, S = [2].
- Since 2 is adjacent to 1 and 1 is "unvisited", put 1 into the stack S, and add (2, 1) to tree T. At this time, S = [2, 1].
- Since all the neighboring vertices of 1 are "visited", pop 1 out of the stack. At this time, S = [2].
- Since all the neighboring vertices of 2 are "visited", pop 2 out of the stack and S becomes empty again.

Additional Samples

Sample inputs and outputs can be found here.

- Sample 2 (ex_dfs2.in and ex_dfs2.ans) corresponds to test cases 4-6.
- Sample 3 (ex_dfs3.in and ex_dfs3.ans) corresponds to test cases 10-11.
- Sample 4 (ex_dfs4.in and ex_dfs4.ans) corresponds to test cases 12-13.
- Sample 5 (ex_dfs5.in and ex_dfs5.ans) corresponds to test cases 14-16.
- Sample 6 (ex_dfs6.in and ex_dfs6.ans) corresponds to test cases 23-25.

Problem Constraints

For all test data, it is guaranteed that: $1 \le k \le n \le 5 \cdot 10^5, 1 \le m \le 5 \cdot 10^5$.

Test ID	$n \leq$	$m \leq$	$k\leq$	Additional Constraints
$1\sim 3$	15	15	n	None
$4\sim 6$	6	6	6	
$7\sim9$	300	300		
$10 \sim 11$			n	А
$12\sim13$				В
$14\sim 16$				None
$17 \sim 18$	$2\cdot 10^5$	$2\cdot 10^5$		А
$19\sim 21$				В
22				None
$23\sim25$	$5\cdot 10^5$	$5\cdot 10^5$		

Additional Constraint A: It is guaranteed that in T, vertex i is connected to vertex i + 1 $(1 \le i < n)$.

Additional Constraint B: It is guaranteed that if the edges of T are combined with all m non-tree edges to form a graph G, then T is an 1-dfs tree of G.