NOI '23 P3 - Depth First Search

Time limit: 6.0s Memory limit: 512M

Depth-first search is a common search algorithm. Using this algorithm, we can obtain a tree ' from an undirected
connected graph G = (V, E) with no self-loops nor parallel edges, and a certain starting point s.

The algorithm can be described as follows:

e Set the stack S to be empty, and let T' = (V, (), which means that the edge set of T is initially empty.

* First, push the starting point s into S.

* Visit the top vertex u of the stack and mark u as "visited".

* |If there is a vertex v adjacent to u and not yet visited, arbitrarily select one from these vertices and let (u, v) be
added to the edge set of T Then, push v into the stack .S, and go back to step 3. If there is no such vertex, pop u
out of the stack.

It can be proved that when G is a connected graph, the algorithm will obtain a certain spanning tree T' of G. However,
the tree T" obtained by the algorithm may not be unique, depending on the search order, i.e., the vertex selected in step
4. If a specific search order can be chosen so that the tree obtained by the algorithm is exactly T, then we call T" an s-dfs
tree of G with respect to the starting point s.

Now, given a tree T" with n vertices labeled from 1 to n, and an additional m edges, we guarantee that these m edges
are distinct and connect different vertices, and are different from the n — 1 tree edges in T'. We call these additional m
edges non-tree edges. Among these n vertices, we specify exactly k vertices as special vertices.

Now, you want to know how many ways there are to select a subset of these m non-tree edges (you can possibly select
none) such that: after the tree edges of 1" and the selected non-tree edges are combined to form a graph G, there exists
a special vertex s such that T is an s-dfs tree of G.

Since the answer may be very large, you only need to output the number of solutions modulo (109 + 7).

Input Specification

The first line of input contains an integer ¢, which represents the test case number. ¢ = 0 represents that this test case is
a sample test.

The second line of input contains three positive integers n, m, k, which represent the number of vertices, the number of
non-tree edges, and the number of critical points, respectively.

Then n — 1 lines follow, each containing two positive integers u, v, representing a tree edge of T'. It is guaranteed that
these n — 1 edges form a tree.

Then m lines follow, each containing two positive integers a, b, representing a non-tree edge. It is guaranteed that (a, b)
does not coincide with an edge on the tree and there are no duplicate edges.

The last line of input contains k positive integers s1, s9, . . . , Sk, representing the labels of the k special vertices. It is
guaranteed that sy, S92, . . . , S, are distinct from each other.

Output Specification

Output a line containing an integer, representing the number of solutions, taken modulo (109 +7).

Sample Input 1

N N R W N BR PO
w b Wb w NN

Sample Output 1

Explanation for Sample Output 1

In this sample, there are three ways to select the non-tree edges: selecting only the edge (1, 3), selecting only the edge
(2,4), or not selecting any non-tree edges. If we select only the edge (1, 3), or do not select any non-tree edges, we can
show that T is a 3-dfs tree of G. The specified search order is as follows:

Put 3 into the stack S. At this time, S = [3].

Mark 3 as "visited".

Since 3 is adjacent to 2 and 2 is "unvisited", put 2 into the stack S and add (3, 2) to tree T'. At this time, S = [3, 2].
Mark 2 as "visited".

Since 2 is adjacent to 1 and 1 is "unvisited", put 1 into stack S and add (2, 1) to tree T At this time, S = [3,2,1].
Since all the vertices adjacent to 1 are "visited", pop 1 off the stack. At this time, S = [3, 2].

Since all the vertices adjacent to 2 are "visited", pop 2 off the stack. At this time, S = [3].

Since 3 is adjacent to 4 and 4 is "unvisited", put 4 into stack S and add (3, 4) to tree T. At this time, S = [3, 4].
Since all the vertices adjacent to 4 are "visited", pop 4 off the stack. At this time, S = [3].

Since all the vertices adjacent to 3 are "visited", pop 3 off the stack and S becomes empty again.

If we select only the edge (2, 4), we can show that T is a 2-dfs tree of G. The specified search order is as follows:

Put 2 into stack S. At this time, S = [2].

Mark 2 as "visited".

Since 2 is adjacent to 3 and 3 is "unvisited”, put 3 into the stack S, and add (2, 3) to tree T'. At this time, S = [2, 3].
Mark 3 as "visited".

* Since 3 is adjacent to 4 and 4 is "unvisited", put 4 into the stack S, and add (3, 4) to tree T'. At this time,
S =12,3,4].
* Since all the neighboring vertices of 4 are "visited", pop 4 out of the stack. At this time, S = [2, 3].
* Since all the neighboring vertices of 3 are "visited", pop 3 out of the stack. At this time, S = [2].
* Since 2 is adjacent to 1 and 1 is "unvisited", put 1 into the stack .S, and add (2, 1) to tree T. At this time, S = [2, 1].
* Since all the neighboring vertices of 1 are "visited", pop 1 out of the stack. At this time, S = [2].
* Since all the neighboring vertices of 2 are "visited", pop 2 out of the stack and S becomes empty again.

Additional Samples

Sample inputs and outputs can be found here.

e Sample 2 (| ex_dfs2.in | and [ex_dfs2.ans |) corresponds to test cases 4-6.

e Sample 3 (| ex_dfs3.in and | ex_dfs3.ans |) corresponds to test cases 10-11.

e Sample 5 (ex_dfs5.in and [ex_dfs5.ans

)
)

® Sample 4 (| ex_dfs4.in | and [ex_dfs4.ans) corresponds to test cases 12-13.
) corresponds to test cases 14-16.
)

® Sample 6 (| ex_dfs6.in and [ex_dfs6.ans |) corresponds to test cases 23-25.

Problem Constraints

For all test data, it is guaranteed that: 1 < k <n <5 - 105, 1<m<5-10°.

TestID | n < | m < | k< | Additional Constraints

1~3 15 15 n None

10 ~ 11 n A
12 ~ 13 B
14 ~ 16 None
17~18 2-10° 2-10° A
19 ~ 21 B
22 None

23~25 5-10° 5-10°

Additional Constraint A: It is guaranteed that in T, vertex is connected to vertexi + 1 (1 < i < n).

Additional Constraint B: It is guaranteed that if the edges of T" are combined with all m non-tree edges to form a graph
G, then T is an 1-dfs tree of G.

https://dmoj.algome.me/data/cnnoi/23/noi23p3/samples.zip

