
NOI '22 P3 - Count

In contest TL 3s, ML 2048MB.

DMOJ Configuration: 6s, ML 1GB (DMOJ only allows for a 1GB memory limit!)

THIS IS AN INTERACTIVE PROBLEM

Given a quintuple where:

 is a rooted tree of n points , where is the set of points of and is the edge set of . The nodes
of the tree are numbered , where the root node is numbered .

 is a set, and the elements in the set are called information. There are two different special elements: the UNIT
element and the ILLEGAL element .

For general information, it has two attributes: VERTEX SET and EDGE SET. For the special case of the identity element, it
only has edge set attribute, while for the illegal information, it does not have either of these two attributes.

For information (the difference of two sets A, B is defined as), the
VERTEX SET of is a size two subset of V, denoted . That is, and .

For information , the EDGE SET o is a subset of E, denoted , such that . Define the
edge set of the identity element is empty, that is, .

For any edge in the tree, denote , there is an information about , , which takes its
endpoints its VERTEX SET and the edge itself as its EDGE SET, that is, , and .

There are two ways that information get combined. Denote them as R and C. They have the following properties

For all , shorthand , , such that .

Combining UNIT with any general information gives the other. That is if , then ; If , then
.

Combining ILLEGAL with ANY information results in illegal information. That is, if or If , then .

For the remaining cases, if the intersection of the EDGE SET of the two information is non-empty, or the intersection
of the POINT SET of the two information has size that's not 1, the combine results in ILLEGAL. That is, if

 or , then .

Otherwise, the operations are specified as

,
,

.

where represents the symmetric difference operation of sets, that is, .

Time limit: 6.0s Memory limit: 1G

(T , I,SV ,SE, ι)

T T = (V ,E) V T E T

1, 2, … ,n 1

I

ϵ ⊥

o ∈ I ∖ {ϵ, ⊥} A B A B = {x ∈ A ∣ x ∉ B}

o SV (o) SV (o) ⊆ V |SV (o)| = 2

o ∈ I ∖ {⊥} SE(o) SE(o) ⊆ E

SE(ϵ) = ∅

e ∈ E e = (u, v) e ι(e) ∈ I

SV (ι(e)) = u, v SE(ι(e)) = e

a, b ∈ I r = R(a, b) c = C(a, b) r, c ∈ I

a = ϵ r = c = b b = ϵ

r = c = a

a =⊥ b =⊥ r = c =⊥

SE(a) ∩ SE(b) ≠ ∅ |SV (a) ∩ SV (b)| ≠ 1 r = c =⊥

SE(r) = SE(c) = SE(a) ∪ SE(b)

SV (r) = SV (a)

SV (c) = SV (a) ⊕ SV (b)

⊕ A ⊕ B = (A ∪ B) ∖ (A ∩ B)

Define the on-tree distance of two points in as the number of edges on the tree that a unique simple path traversed
by two points as endpoints.

Given the scoring parameter and queries, each query consisting a vertex of the tree and a non-negative integer .
Denote to be the set of all vertices in whose distances to in the tree does not exceed , and

 to be the set of edges inside .

It can be shown that starting from and all (), a finite number of R, C calls produces an information such
that and . In particular, if , you the output should be the UNIT element .

In each set of queries, you need to construct an information that satisfies this requirement, subject to the limit that the
sum of the calls to and does not exceed .

Implementation Details
Files can be found here.

Make sure you #include count.h at the beginning of your program. The header file count.h implements the following:

1. Define the data type info corresponding to the information;
2. Define the info type constant emptyinfo corresponding to , which you can use directly in the program.
3. The following two information merging functions, which you can call directly in the program:

1 info MR(info a, info b);
2 info MC(info a, info b);

The two functions return the information corresponding to and , respectively. You need to ensure
that calling or does not result in , otherwise the program may behave unexpectedly.

4. A function to determine whether a information is UNIT, you can call it directly in the program:

bool isempty(info a);

This function returns true if and only if a is an identity element. See the reference interaction library for more
implementation details.

You do not need to, and should not, implement main();

You need to implement the following functions:

void init(int T, int n, int q, vector<int> fa, vector<info> e, int M);

 is the test point number, is the number of points in the tree, is the number of queries, and is the scoring
parameter for that test point.
Both fa and e have length . For , fa[i] and i + 2 are the two endpoints of the i-th edge , and
is the info type element corresponding to mentioned in the title description. The data guarantees that is

T

M q u d

X T u d

Y = {(a, b) ∈ E ∣ a, b ∈ X} X

ϵ L(e) e ∈ E o

o ≠⊥ SE(o) = Y d = 0 ϵ

o

R C M

ϵ

R(a, b) C(a, b)

R(a, b) C(a, b) ⊥

T n q M

n − 1 0 ≤ i < n − 1 ei ei

ι(ei) fai

https://dmoj.algome.me/data/cnnoi/22/noi22p3/samples.zip

less than .

info ask(int u, int d);

Give a query, see the question description for the meaning of the parameters. You need to return a information that
satisfies the condition of the question at the end of the function.

When testing, at each test case, the interactive library will call the init function exactly once, and then call the ask

function times. The interactive library will use a special implementation, a single info type variable will constantly
consume bytes of memory,

It is guaranteed that under the condition that the number of calls is satisfied and the isempty function is not called, the
time required for the interactive library to run in the final test does not exceed seconds, and the memory consumed
by the interactive library itself does not exceed 16 MiB. It is guaranteed that the final tested interactive library will take no
more than seconds to run with at most isempty function calls.

A file named count.cpp is included in the issued files: you may use it.

Testing

The reference materials provides of two interactive libraries grader.o and checker.o are provided in this topic
directory, which are linkable files generated by compiling two different interactive libraries. The implementation of the
interaction library used in the final test is different from this implementation, so the solution of the contestant should not
depend on the specific implementation of the interaction library, nor should it depend on the specific implementation of
the info type in count.h.

You need to modify the distributed count.h to help with linking. Specifically, when linking the source code
count.cpp with the program grader.o , you need to comment out the 5th line of the count.h code and keep the 4th

line of code. Linking the checker.o method is similar, you need to comment out the 4th line of the count.h code
and keep the 5th line of code. Players can modify the implementation of count.h by themselves to compile different
programs.

After modification, the contestant can use the following command to compile the executable program in the directory of
this question:

g++ count.cpp ‐c ‐O2 ‐std=c++14 ‐lm && g++ count.o grader.o ‐o count
g++ count.cpp ‐c ‐O2 ‐std=c++14 ‐lm && g++ count.o checker.o ‐o count

The first command line will compile the current count.cpp and link it with grader.o to generate the executable file
count. The second line command will compile the current count.cpp and link it with checker.o to generate the
executable file count.

The executable file count obtained by compiling the above method runs as follows:

The executable will read data in the following format from standard input:

i + 2

q

12

0.6

0.25 108

The first line contains four integers , which represent the test point number, the number of points in the
tree, the number of queries, and the scoring parameter;
In the second line, n - 1 integers represent the parent node numbers from to , respectively. When
debugging locally, you need to ensure that , ;
The next lines contain two integers each, describing a query.

After being read in, the interactive library is tested. If your program does not meet the interactive library limit, the output
will return the corresponding error. Otherwise, for the linked executable, the output is as follows:

A total of three integers on one line, where: ∗ represents the total number of times the program calls
the interactive library function in the init function; ∗ represents the total number of times the program calls
interactive library functions during running; ∗ * represents the maximum number of times the program calls the
interactive library function in q times of ask functions.
For the above three statistics, we only count the number of calls of the MR and MC functions, but not the number of
calls of the isempty function.
When linking different files, the checks they can perform are also different, specifically:
grader.o : It does not check whether the information returned by the ask function is correct at runtime, but it can

help players determine whether the interaction meets the requirements. The running time of this program is closest
to the interactive library at the time of evaluation, so players can use this program to test the running speed, but the
correctness of the program is not guaranteed.
checker.o : It will check whether the information returned by the ask function is correct at runtime, and can also

help players determine whether the interactive operation meets the requirements. At the same time, it will check
whether the information returned by the ask function is correct. This program can check the correctness of the
answers.

Samples

See count{1,2,3,4}.{in, ans}

Samples 2 & 3 satisfy special properties A and B (see below) respectively

NOTE:

An uninitialized variable of type info is not guaranteed to be emptyinfo .
Please do not try to access or modify member variables of type info , otherwise it will be regarded as attacking
the interactive library.
Please do not call the MR and MC functions before the init function call, otherwise undefined behavior may
occur.
You can only access the variables defined by yourself and the info type variables returned by the interactive
library. Trying to access other spaces may result in compilation errors or runtime errors.

This question will first be subject to the same restrictions as traditional questions. For example, compilation errors will
result in 0 points for the entire question, and runtime errors, exceeding the time limit, exceeding the space limit, etc. will
result in 0 points for the corresponding test points, etc. In addition to the above conditions, a test point will receive a
score of 0 if the program executes an illegal function call or gives an incorrect answer in a query operation. Otherwise,
denote and as the number of times your program calls the interactive library function in the init function, and the
maximum number of times your program calls the interactive library function in all q ask functions. If and

 does not exceed the scoring parameter for that test point, you will get a score for that test point, otherwise you

id,n, q,M

p2, p3, … , pn 2 n

∀i ∈ [2,n] pi < i

q u, d

C1,C2,C3 C1

C2

C3

C1 C3

C1 ≤ 3 ⋅ 107

C3 M

can't get a score for that test point. Note: When calculating and , only the number of calls of the MR and MC
functions will be counted, but not the number of calls of the isempty function.

Constraints

For all test cases, , , for each query, , .

TestCase Property

A

B

B

B

C

D

Property A: For all , the parent of is .
Property B: For all queries, .
Property C: For all queries, .
Property D: For all queries, .

C1 C3

1 ≤ n ≤ 2 × 105 1 ≤ q ≤ 106 1 ≤ u ≤ n 1 ≤ d ≤ n − 1

n = q = M =

1 1000 104 500

2 2000 104 500

3, 4 105 106 5

5, 6 6 × 104 6 × 104 50

7 6 × 104 6 × 104 5

8 105 105 5

9 7500 5 × 104 500

10 104 5 × 104 500

11 1.5 × 104 5 × 104 500

12 2 × 104 5 × 104 50

13 2.5 × 104 5 × 104 5

14 3 × 104 105 5

15 6 × 104 106 5

16 6 × 104 106 5

17 8 × 104 106 5

18 105 106 5

19 1.5 × 105 106 5

20 2 × 105 106 1

i = 1, 2, . . . ,n − 1 (i + 1) i

u = 1

d <= 100

d >= 1000

