
Page 1 of 5

NOI '20 P5 - Surreal

Your code will be run through three extra samples. These sample files can be found here.

In this problem, a tree is defined recursively: a single node gives rise to a tree, letting a tree to be the left (or right) child (of the
root node) gives rise to a tree, and letting two trees to be left and right children (of the root node) gives rise to a tree. All
structures generated using the above three rules in finite steps are called trees. In other words, the "tree" here refers to a non-
empty, rooted binary tree that distinguishes left children and right children.

Two trees , are said to be isomorphic () if they meet one of the following four conditions: (1) trees that are formed
by one node are isomorphic; (2) if the root nodes of and have only the left child, and their left subtrees are isomorphic,
then and are isomorphic; (3) if the root nodes of and have only the right child, and their right subtrees are
isomorphic, then and are isomorphic; (4) if the root nodes of and have both the left and right children, their left
subtrees are isomorphic, and their right subtrees are also isomorphic, then and are isomorphic. In other words, two trees
are isomorphic if and only if they are the same when the nodes are unlabeled but we are distinguishing left children and right
children.

It is obvious that the isomorphism of trees forms an equivalence relation over all trees, and we treat isomorphic trees as the
same. We say two trees are different if and only if they are not isomorphic.

A leaf of a tree is defined in the usual way: a leaf is a node without any children.

We say may be converted to using a single-step substitution if we may replace a leaf node of with another tree and
the resulting tree is isomorphic to , and we use to denote may be converted to using a single-step
substitution. We say may be converted to by substitution if there exists a natural number and trees
such that . We use to denote may be converted to by substitution.

In other words, a single-step substitution means we are deleting a leaf of the tree and putting a new tree at the corresponding
position, just like a larger subtree growing at the original leaf node. If a tree may be converted to another tree by
substitution, then it just means we may use zero, one, or multiple rounds of single-step substitutions to convert into . For
example, any tree may be converted to itself by substitution, or in other words, for any tree , we have . This figure
shall help understand the meaning of substitution and single-step substitution:

In particular, we can convert any tree into infinitely many different trees by substitution, and a tree formed by a single node
can be converted to any other tree by substitution. For a tree , we define to be the set of trees that we may convert

 into by substitution, or in other words, . Moreover, if is a finite set of
trees, then is defined to be the union of where . So we have .

Time limit: 1.0s Memory limit: 512M

T T ′ T ≡ T ′

T T ′

T T ′ T T ′

T T ′ T T ′

T T ′

T T ′ T T ′′

T ′ T → T ′ T T ′

T T ′ n ≥ 1 T1, T2, … , Tn

T ≡ T1 → T2 → ⋯ → Tn ≡ T ′ T →∗ T ′ T T ′

T T ′

T T ′

T T →∗ T

T grow(T)

T grow(T) = {T
′ ∣ T →∗

T
′} T = {T1, T2, … , Tn}

grow(T) grow(Ti) i = 1, 2, … , n grow(T) = ⋃
Ti∈T

grow(Ti)

https://loj.ac/p/3343/files

Page 2 of 5

We may treat as the set of trees the trees in set can grow into. In other words, the set of trees that trees in
can grow into includes all trees that may be converted into from some by substitution. We may call a set of trees a
forest. Not rigorously speaking, the new forest that a given forest can grow into are all the trees in the given forest and all
possible trees that a tree in the given forest may grow into. It is obvious that the forest a non-empty forest can grow into is an
infinite forest, but the infinite forest, or in other words, , does not necessarily contain all the trees. Moreover, it does
not have to contain "nearly all" trees.

We say a forest is almost complete (or in other words, contains almost all trees) if there are only finitely many trees are not in
the forest. For a finite forest , may contain all trees, contain almost all trees, or there are infinitely many trees not
in the forest. For a given finite set of trees , there exists an efficient algorithm to decide whether is almost
complete, i.e., there are only finitely many trees that trees in cannot grow into.

The problem asks given a finite set of trees , whether there exists only finitely many trees satisfying .
 simply means there does not exist a such that .

Input Specification

Each test case contains multiple instances. The first line contains a positive integer . There are instances following, and
each instance is specified in the following format: the first line is an integer denoting the number of trees in the set. We will
specify the trees using the following format: the first line is an integer denoting the number of nodes in the tree. The
nodes are numbered . The following lines contain two non-negative integers each, and the -th line contains
separated by a space denoting the left child and the right child of node . If the left or the right child does not exist, then or

 is equal to . Of course, the leaf nodes satisfy . The input guarantees that it will be a tree with node being the
root. Please note that the labels of the nodes are for convenience only, and isomorphic trees are considered to be the same.

There may be isomorphic trees in the trees of an instance. If we remove the duplicate trees (i.e. we only keep one tree for
each isomorphism class), they shall form a set . You need to decide whether is almost complete.

Output Specification

The output contains lines specifying the answers to the instances. The -th line contains a string: if in the -th instance, the
 trees in the input grow into an almost complete forest (or in other words, there are only finitely many trees the trees

specified in the instance cannot grow into), output Almost Complete . Otherwise, output No . Please pay attention to
spelling and capitalization.

Sample Input 1

1
1
1
0 0

Sample Output 1

Almost Complete

grow(T) T T

T ∈ T

grow(T)

T grow(T)

T grow(T)

T

T T T ∉ grow(T)

T ∉ grow(T) T
′ ∈ T T

′ →∗
T

T T

m

m n

1, 2, … , n n i li, ri

i li

ri 0 li = ri = 0 1

m

T grow(T)

T T i i

m

Page 3 of 5

Sample Input 2

1
3
3
2 3
0 0
0 0
2
2 0
0 0
2
0 2
0 0

Sample Output 2

Almost Complete

Sample Input 3

1
2
3
2 3
0 0
0 0
2
2 0
0 0

Sample Output 3

No

Explanation for Sample Output 3

It is obvious for all chain-looking trees such that every non-leaf node has only the right child are not in , and
so there are infinitely many trees not in .

n ≥ 2 grow(T)

grow(T)

Page 4 of 5

Constraints

For all test cases, , , , . Here, denotes the sum of numbers of
nodes of the trees in the instances occurring in a test case, denotes the sum of number of trees occurring in the
instances in a test case, denotes the maximum height of trees occurring in the particular test case (a tree with only one
node has height 1).

Test case Additional Constraints

1 None.

2 For each instance, , or in other words, there are at most 4 trees in
the set of trees occurring in the instance.

3

4 None.

5 For each instance, the trees in the set have the same height.

6 None.

7 For each instance, the trees in the set have the same height.

8 None.

9 For each instance, the trees are chains (i.e. any non-leaf node has only
one child).

10 For each instance, there are only trees satisfying one of the following
two conditions

(1) any non-leaf node has only one child
(2) there are exactly two leaf nodes, and they have the same parent. All

other nodes have exactly one child.

11

12

13

∑ n ≤ 2 × 106 ∑ m ≤ 2 × 106 max h ≤ 2 × 106
T ≤ 102 ∑ n

∑ m

max h

T ∑ n ∑ m max h

100 ≤ 1000 ≤ 1

≤ 2 m ≤ 4

≤ 1 000 000 ≤ 4

≤ 5

≤ 8

≤ 9

≤ 10

≤ 1 000 000

20 ≤ 1000 ≤ 100 ≤ 1000

≤ 2000

≤ 100 000

≤ 200 000

Page 5 of 5

14 None.

15

16

17

18

19

20

21

22

23

24

25

≤ 800 ≤ 200 ≤ 800

≤ 1000 ≤ 100 ≤ 1000

≤ 2000

40 ≤ 300 000

≤ 600 000

≤ 900 000

≤ 1 200 000

≤ 1 500 000

≤ 2 000 000

