NOI '16 P3 - The Beauty of Cycles

Time limit: 2.0s Memory limit: 512M

We say a base-k real number is *beautiful* if the decimal part of the real number is purely cyclic.

Now we want to know given base-10 numbers n, m, how many **distinct** (in value) purely cyclic real numbers there are that can be represented by $\frac{x}{y}$ where $1 \le x \le n$, $1 \le y \le m$, and x, y are integers.

A real number is said to be purely cyclic if and only if it can be written in the form of

```
a.\dot{c_1}c_2c_3\ldots c_{p-1}\dot{c_p}
```

where a is an (base-k) integer, $p \ge 1$, and for $1 \le i \le p$, c_i is a digit in base k.

For example, under base 10,

 $0.45454545\cdots = 0.\dot{4}\dot{5}$

is purely cyclic and can be represented by $\frac{5}{11}$ or $\frac{10}{22}$. Under base 10,

 $0.1666666\cdots = 0.1\dot{6}$

is not purely cyclic but can be represented by fractions like $\frac{1}{6}$.

Attention: an integer is purely cyclic since its decimal part can be written as repeating 0s or repeating k - 1s. A terminating decimal whose decimal part is non-zero is not considered to be purely cyclic.

Notes: In China, the repeating part of a repeating decimal is marked by one or two dots. In some countries, the repeating part is marked by a line above the repeating part.

Input Specification

The input consists of one line with three base-10 integers n, m, k whose meanings are described in the problem description.

Output Specification

Output a line with an integer denoting the beautiful numbers satisfying all the constraints.

Sample Input 1

Sample Output 1

Explanation of Sample 1

The beautiful numbers are $1/1 = 1.0000 \dots$, $1/3 = 0.3333 \dots$, $2/1 = 2.0000 \dots$, $2/3 = 0.6666 \dots$. Even though 1/1 and 2/2 are both purely cyclic, they are equal in value so they are only counted once. Similarly, 1/3 and 2/6 should also be counted once.

Sample Input 2

23333 666666 310

Sample Output 2

5089564081

Constraints

For all test cases, $1 \leq n \leq 10^9$, $1 \leq m \leq 10^9$, $2 \leq k \leq 2000$.

Items left blank means there are no special restrictions.

Test case	n	m	k
1	≤ 10	≤ 20	=2
2	≤ 100	$\leq 10^4$	
3	≤ 1000		
4	≤ 10000		
5	≤ 10	≤ 20	=3
6	≤ 100	$\leq 10^4$	
7	≤ 1000		
8	≤ 10000		

9	≤ 10	≤ 20	≤ 100
10	≤ 100	$\leq 10^4$	
11	≤ 1000		≤ 1000
12	≤ 10000		
13	$\leq 10^5$	$\leq 10^8$	≤ 100
14	$\leq 2 imes 10^5$		≤ 1000
15	$\leq 5 imes 10^5$		
16	$\leq 10^{6}$	$\leq 10^8$	≤ 100
17	$\leq 2 imes 10^{6}$		≤ 1000
18	$\leq 5 imes 10^{6}$		
19	$\leq 10^7$	$\leq 10^8$	≤ 100
20	$\leq 2 imes 10^7$		≤ 1000
21			
22,23	$\leq 10^8$	$\leq 10^8$	
24,25			