# NOI '14 P5 - Random Number Generator

#### Time limit: 2.0s Memory limit: 256M

#### National Olympiad in Informatics, China, 2014

Little H has recently been studying randomized algorithms. Randomized algorithms often use random number generation functions (e.g. random from Pascal and rand from C/C++) to obtain their randomness. In reality, random number functions are not truly "random." Instead, they work off of some specific algorithms.

As such, the following recursive quadratic polynomial is one method:

The algorithm selects nonnegative integers  $x_0$ , a, b, c, and d as its seed values and uses the following recursive calculations to generate a random number.

For any  $i \geq 1$ ,  $x_i = (a imes x_{i-1}^2 + b imes x_{i-1} + c) mod d$ .

This way, a sequence of nonnegative integers  $\{x_i\}_{i\geq 1}$  of arbitrary length can be obtained. Typically, we can consider this sequence to be random. Using the sequence  $\{x_i\}_{i\geq 1}$ , we can use the following algorithm to produce  $\{T_i\}_{i=1}^K$ , a random permutation of the numbers 1 to K.

1. Initialize T to the sequence of integers from 1 to K.

2. Perform K swaps on the sequence T. The *i*-th swap will swap the value of  $T_i$  with the value of  $T_{(x_i \text{mod}i)+1}$ .

Outside of this base number of K swaps, little H has made **an additional** Q swaps. For the *i*-th additional swap, little H will choose two positions  $u_i$  and  $v_i$  and swap the values of  $T_{u_i}$  and  $T_{v_i}$ .

To check the effectiveness of the random permutation generator, little H designed the following problem:

Little H has an N row by M column grid. She initially follows the above process, producing a random permutation  $\{T_i\}_{i=1}^{N \times M}$  of the integers from 1 to  $N \times M$  after  $N \times M + Q$  swaps. Then these  $N \times M$  values are then placed back into the grid, row for row, column for column. That is, the cell at column j of row i in the original grid will now take on the value of  $T_{(i-1) \times M+j}$ .

Afterwards, little H wishes to start from the top-left corner of the grid (i.e. row 1, column 1), **each step moving either right or down under the precondition that she does not move outside of the grid**, and reach the bottom-right corner (i.e. row N, column M).

Little H writes down the value of every cell she travels through, **ordered from least to greatest**. This way, for any valid path, little H can obtain an increasing sequence of length N + M - 1 which we will call the **path sequence**. Little H wishes to know the **lexicographically smallest** path sequence that she can obtain.

# **Input Specification**

Line 1 of input consists of five integers  $x_0$ , a, b, c, and d, representing the seed values to little H's random number generator.

Line 2 of input consists of three integers N, M, and Q, indicating that little H generates a permutation from 1 to  $N \times M$  to fill her  $N \times M$  grid. Also, after little H performs her  $N \times M$  swaps, she will perform an additional Q swaps.

The final Q lines will each contain two integers  $u_i$  and  $v_i$ , indicating that the *i*-th additional swap involves swapping  $T_{u_i}$  and  $T_{v_i}$ .

# **Output Specification**

The output should consist of one line containing N + M - 1 space-separated positive integers, representing the lexicographically smallest path sequence that little H can obtain.

# Sample Input 1

## Sample Output 1

1 2 6 8 9 12

## Sample Input 2

654321 209 111 23 70000001 10 10 0

#### Sample Output 2

1 3 7 10 14 15 16 21 23 30 44 52 55 70 72 88 94 95 97

## Sample Input 3

123456 137 701 101 10000007 20 20 0 1 10 12 14 16 26 32 38 44 46 61 81 84 101 126 128 135 140 152 156 201 206 237 242 243 253 259 269 278 279 291 298 338 345 347 352 354 383 395

# **Explanation**

For sample 1, according to the input seed values, the first 12 random numbers of  $x_i$  are:

9 5 30 11 64 42 36 22 1 9 5 30

With these 12 random numbers, little H will perform 12 swap operations, yielding the following:

6 9 1 4 5 11 12 2 7 10 3 8

After the additional 3 swap operations, little H obtains the final permuted sequence of:

12 9 1 7 5 11 6 2 4 10 3 8

This sequence will yield the following grid.

| 12 | 9  | 1 | 7 |
|----|----|---|---|
| 5  | 11 | 6 | 2 |
| 4  | 10 | 3 | 8 |

The optimal path sequence is: 12 
ightarrow 9 
ightarrow 1 
ightarrow 6 
ightarrow 2 
ightarrow 8.

# Constraints

The constraints of all the test cases are outlined below.



| 1  | $2\leq N,M\leq 8$       | Q=0                   | $egin{array}{l} 0 \leq a \leq 300 \ 0 \leq b,c \leq 10^8 \ 0 \leq x_0 < d \leq 10^8 \ 1 \leq u_i, v_i \leq N 	imes M \end{array}$ |
|----|-------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 2  | $2 \leq N, M \leq 200$  |                       |                                                                                                                                   |
| 3  |                         |                       |                                                                                                                                   |
| 4  | $2 \leq N, M \leq 2000$ | $0 \leq Q \leq 50000$ |                                                                                                                                   |
| 5  |                         |                       |                                                                                                                                   |
| 6  |                         |                       |                                                                                                                                   |
| 7  | $2 \leq N, M \leq 5000$ |                       |                                                                                                                                   |
| 8  |                         |                       |                                                                                                                                   |
| 9  |                         |                       |                                                                                                                                   |
| 10 |                         |                       |                                                                                                                                   |

Problem translated to English by Alex.