ICPC NEERC 2010 B - Binary Operation

Time limit: 1.0s Memory limit: 64M

Consider a binary operation \odot defined on digits 0 to 9, \odot : $\{0, 1, \dots, 9\} \times \{0, 1, \dots, 9\} \rightarrow \{0, 1, \dots, 9\}$, such that $0 \odot 0 = 0$.

A binary operator \otimes is a generalization of \odot to the set of non-negative integers, $\otimes : \mathbb{Z}_{0+} \times \mathbb{Z}_{0+} \to \mathbb{Z}_{0+}$. The result of $a \otimes b$ is defined in the following way: if one of the numbers a and b has fewer digits than the other in decimal notation, then append leading zeroes to it, so that the numbers are of the same length; then apply the operation \odot digit-wise to the corresponding digits of a and b.

 $\bigotimes \frac{5566}{239} \xrightarrow{} \bigotimes \frac{5566}{239} \xrightarrow{} \bigotimes \frac{5566}{0239} \xrightarrow{} \bigotimes \frac{5}{0} \stackrel{\circ}{\odot} \stackrel{\circ}{2} \stackrel{\circ}{\odot} \stackrel{\circ}{3} \stackrel{\circ}{\odot} \stackrel{\circ}{9} \stackrel{\circ}{4} \xrightarrow{} \bigotimes \frac{5566}{0239} \xrightarrow{} \bigotimes \frac{5566}{239} \xrightarrow{} \boxtimes \xrightarrow{} \boxtimes \frac{5566}{239} \xrightarrow{} \boxtimes \xrightarrow{} \boxtimes \frac{5566}{239} \xrightarrow{} \boxtimes \xrightarrow{} \Longrightarrow \frac{5566}{239} \xrightarrow{} \xrightarrow{} \Longrightarrow \frac{5566}{23} \xrightarrow{} \Longrightarrow \xrightarrow{} \longrightarrow$

Let us define \otimes to be left-associative, that is, $a \otimes b \otimes c$ is to be interpreted as $(a \otimes b) \otimes c$.

Given a binary operation \odot and two non-negative integers a and b, calculate the value of $a \otimes (a + 1) \otimes (a + 2) \otimes \cdots \otimes (b - 1) \otimes b$.

Input Specification

The first ten lines of the input contain the description of the binary operation \odot . The i^{th} line of the input contains a space-separated list of ten digits - the j^{th} digit in this list is equal to $(i - 1) \odot (j - 1)$. The first digit in the first line is always 0.

The eleventh line of the input contains two non-negative integers a and b ($0 \le a \le b \le 10^{18}$).

Output Specification

Output a single number - the value of $a \otimes (a + 1) \otimes (a + 2) \otimes \cdots \otimes (b - 1) \otimes b$ without extra leading zeroes.

Sample Input

Sample Output