Mock CCC '22 1 S5 - Berkeley Math Tournament Awards Ceremony

Time limit: 0.25s Memory limit: 1G

Kaity is the tournament director for the Berkeley Math Tournament, a tournament so large that Kaity runs it on an infinite 2D plane.

The 2D plane is templatized by an $N \times M$ rectangle R, the top-left corner being (0,0) and the bottom-right corner being (N-1, M-1). Square (x, y) has an obstacle if and only if square (r, s) in the template rectangle has an obstacle, where r and s are respectively remainders when x and y are divided by N and M. One can only travel directly between two squares if their Manhattan distance is 1 and both are empty.

Kaity is running the awards ceremony at (0, 0). She wishes to know for Q distinct empty points (x_i, y_i) whether someone at (x_i, y_i) can travel to (0, 0) without running into any obstacles.

Constraints

 $1 \leq N, M \leq 100$

- $1 \leq Q \leq 2 \cdot 10^5$
- $|x_i|,|y_i|\leq 10^9$

In tests worth 1 mark, $Q \leq 10^3$.

Input Specification

The first line contains two integers, N and M.

The next N lines contain a string of M characters, each character being either $\$ if it is empty or # if it contains an obstacle.

The next line contains one integer, Q.

The next Q lines contain two integers, x_i and y_i , indicating a query point (x_i, y_i) .

The input is set such that each of these points and (0,0) will not contain an obstacle.

Output Specification

Output Q lines. On the *i*th line, output yes if (0,0) is reachable. Otherwise, output no.

Sample Input 1

6 9
#####
##
#
#####
#
##
5
1 4
5 4
1 -5
5 -5
-100000000 0

Sample Output 1

yes		
no		
no		
yes		
yes		