Mock CCC '18 Contest 5 J5/S3 - Directed Graph Connectivity

Time limit: 0.6s Memory limit: 1G

Given a directed graph of N vertices and M edges, determine for each edge if it is possible to reach vertex N from vertex 1 given that that edge is deleted from the graph.

Constraints

- $1 \leq N \leq 50$
- $1 \leq M \leq N^2 N$
- $1 \leq s_i, t_i \leq N, s_i
 eq t_i$

Input Specification

The first line of the input contains two space-separated integers, N and M.

Each of the next M lines contains two space-separated integers, s_i and t_i , indicating that the *i*th edge goes from vertex s_i to t_i .

You may assume that any given tuple (s_i, t_i) appears at most once.

Output Specification

 ${\rm Output}\ M {\rm \ lines}.$

On the *i*th line, given that the *i*th edge is deleted, print $\overrightarrow{\text{YES}}$ if it is still possible to reach vertex N from vertex 1. Print $\overrightarrow{\text{NO}}$ otherwise.

Sample Input

3 3		
1 2		
2 1		
2 3		

Sample Output

NO			
YES			
NO			