Time limit: 4.5s Memory limit: 1G

You are given four sequences a, b, c, and d, each consisting of exactly M positive integers.

Let graph g(k) be the graph consisting of vertices labeled from 1 to N where there is a directed edge from vertex u to vertex v if and only if there exists some index i such that $a_i = u$, $b_i = v$, and $c_i \le k \le d_i$.

Define f(s, t, k) to be 1 if there is a path from vertex s to vertex t in g(k), and 0 otherwise.

Given S, T, and K, compute $\sum_{k=1}^{K} f(S, T, k)$: the sum of f(S, T, k) as k ranges over all positive integers from 1 to K.

Constraints

 $egin{aligned} 2 &\leq N \leq 1\,000 \ \ 1 &\leq M \leq 5\,000 \ \ 1 &\leq K \leq 10^9 \ \ 1 &\leq S,T \leq N,S
eq T \ \ 1 &\leq a_i, b_i \leq N, a_i
eq b_i \ \ 1 &\leq c_i \leq d_i \leq K \end{aligned}$

For any pair (x, y) with $x \neq y$, there is at most one index j such that $a_j = x$ and $b_j = y$.

Input Specification

The first line contains three space-separated integers N, M, and K.

The second line contains two space-separated integers S and T.

The next M lines each contain four space-separated integers. Specifically, line i of the input contains a_{i-2} , b_{i-2} , c_{i-2} , and d_{i-2} in order for $3 \le i \le M+2$.

Output Specification

Print, on a single line,

$$\sum_{k=1}^K f(S,T,k)$$

Sample Input 1

4 5 10	
3 2	
1 2 4 7	
3 1 1 6	
3 4 7 10	
2 4 3 5	
4 2 8 9	

Sample Output 1

5

Sample Input 2

Sample Output 2

5