Median Modulo

Time limit: 3.0s **Memory limit:** 256M

You are given a positive integer N. Calculate the lower median of the numbers $N \mod 1, N \mod 2, N \mod 3, \ldots, N \mod N$.

The lower median of a sequence of k numbers is the number at position $\lfloor \frac{k+1}{2} \rfloor$ when the sequence is sorted. For example, the lower median of the sequence 1, 3, 5, 7 is 3 and the lower median of the sequence 1, 1, 2, 3, 5 is 2.

Input Specification

The first and only line of input contains the integer N.

Constraints

Subtask 1 [10%]

 $1 \leq N \leq 10^6$

Subtask 2 [20%]

 $1 \leq N \leq 10^9$

Subtask 3 [20%]

 $1 \leq N \leq 10^{12}$

Subtask 4 [25%]

 $1 \leq N \leq 10^{15}$

Subtask 5 [25%]

 $1 \leq N \leq 10^{18}$

Output Specification

Output one number: the lower median in the problem statement.

Sample Input 1

7

Sample Output 1

Explanation for Sample Output 1

The sequence $7 \bmod 1$, $7 \bmod 2$, $7 \bmod 3$, $7 \bmod 4$, $7 \bmod 5$, $7 \bmod 6$, $7 \bmod 7$ is equal to 0, 1, 1, 3, 2, 1, 0. When sorted, this becomes 0, 0, 1, 1, 1, 2, 3. The lower median is the 4^{th} element of this sorted sequence, which is 1.

Sample Input 2

50

Sample Output 2

6