Mock CCO '19 Contest 2 Problem 1 - A Dynamic Connectivity Problem

Time limit: 0.6s Memory limit: 162M Java 8: 1.0s

A graph has N vertices and M edges. When a vertex is deleted, all incident edges are deleted.

Given a sequence of K vertices to be deleted one by one, count the number of connected components before and after each deletion.

Constraints

 $1 \leq N \leq 2M$

 $1 \leq M \leq 2 \cdot 10^5$

All vertices are labeled from 0 to N-1.

Input Specification

The first line contains two space-separated integers, N and M.

Each of the next M lines contains two space-separated integers, a_i and b_i , indicating that a_i and b_i are connected with an edge.

Next, a single integer K follows on its own line, indicating the number of vertices that will be deleted.

K lines follow, each indicating a vertex that is to be deleted. A vertex will be deleted at most once.

Output Specification

Output K + 1 lines. On line *i*, output the number of connected components after the first i - 1 vertices have been deleted.

Sample Input

8 13			
0 1			
1 6			
6 5			
50			
06			
1 2			
2 3			
3 4			
4 5			
7 1			
72			
76			
36			
5			
1			
6			
3			
5			
7			

Sample Output

1			
1			
1			
2			
3			
3			