Time limit: 1.0s Memory limit: 512M

The first equation of motion states that

v = u + a imes t

where u is the initial velocity, v is the final velocity, a is the acceleration, and t is the time the object spends in motion.

You calculate the acceleration of a car and conclude that it has an acceleration of 3.

Given the initial velocity and the time the car spends accelerating, can you determine the final velocity of the car?

Input Specification

The input consists of two lines. The first line contains an integer u ($0 \le u \le 30$), representing the initial velocity. The second line contains an integer t ($0 \le t \le 10$), representing the time the car spends in motion.

Output Specification

Output the final velocity of the car.

Sample Input 1

10 3

Output for Sample Input 1

19

Explanation of Output for Sample Input 1

When the initial velocity is 10 and the time in motion is 3 seconds, we find that the final velocity is $10 + 3 \times 3 = 19$.

Sample Input 2

Output for Sample Input 2

22

Explanation of Output for Sample Input 2

When the initial velocity is 10 and the time in motion is 4 seconds, we find that the final velocity is $10 + 3 \times 4 = 22$.