Time limit: 1.0s	Memory limit: 512M
Java 8: 2.5s	-
PyPy 2: 2.5s	
PyPy 3: 2.5s	

Naofumi is exploring a magical maze! The maze is a 2-D array with $N \times N$ pillars. The height of each pillar is generated using two arrays R and C, each of size N. Specifically, the height of the pillar at row i and column j, pillar (i, j), would be $R_i \times C_j$. A path in this maze is defined as a sequence of pillars where every successive pillar is below or to the right of the previous pillar (i.e. only moving down or to the right). A valid path is defined as a path where the height of each pillar in the path is 0. To help him reduce the height of the pillars, Naofumi has a magical modulus spray, allowing him to reduce the height of each pillar to $R_i \times C_j \mod M$, where M is any prime number Naofumi chooses. Being the observant person he is, Naofumi has Q queries containing 4 integers r_a, c_a, r_b, c_b . For each query, he wants you to find out the maximum prime M he can choose such that there is a valid path from (r_a, c_a) to (r_b, c_b) , or determine that it is impossible to create a valid path. Note that he does not actually use the spray after you answer a query. Can you help him find these values?

Input Specification

The first line will contain 2 integers N and Q, representing the dimensions of the grid and the number of queries.

The second line will contain N integers R_{i} , representing the array R.

The third line will contain N integers C_{j} , representing the array C.

The next Q lines will each contain 4 integers r_a, c_a, r_b, c_{b} representing a query from (r_a, c_a) to (r_b, c_b) .

Output Specification

The output should contain Q integers, each on a separate line, representing the maximum prime M that can be used to create a valid path for the corresponding query. If no such M exists, print -1.

Constraints

 $egin{aligned} 1 &\leq N \leq 10^5 \ 1 &\leq Q \leq 10^5 \ 1 &\leq R_i, C_j \leq 1000 \ 1 &\leq r_a, c_a, r_b, c_b \leq N \ r_a &\leq r_b \ c_a &\leq c_b \end{aligned}$

Subtask 1 [20%]

 $1 \leq N \leq 100$

 $1 \leq Q \leq 100$

Subtask 2 [80%]

No additional constraints.

Sample Input

Sample Output

2 3 1

-1

Visualization of Sample Input

×	3	4	2	6	5
2	6	8	4	12	10
3	9	12	6	18	15
1	3	4	2	6	5
4	12	16	8	24	20
3	9	12	6	18	15