
Page 1 of 3

Linked List

1992 is a different time. It's before the time that the entire Windows division at Microsoft could only afford to get one
computer with a staggering 96 MB of RAM to test Windows 95 on. The average computer back then had less than 4 MB
of RAM. It's less than what modern Java requires to start up!

To secure your release back to the modern age, you came across me. I would gladly let you back to the future if only
you do me one little favour. I need to implement a linked list that can store elements, up to , each storing
integers ranging from to . But wait, I am not very rich! I can only afford 10 MB of RAM (remember
it's 1992) to run the program.

Your linked list must support these operations:

< select the previous element (rewinding).
> select the next element (advancing).
= changes the current element to a value (updating).
+ creates a new element with a value, shifting the current element back (inserting). The pointer will point at the

inserted element.
- removes the current element, shifts pointer to the next element (deleting).
! prints the value of the current element (printing).

Note that your linked list starts empty, and it is possible to delete the last element in the list. In both cases, the pointer
goes beyond the end of the list. In no case will the past-the-end "element" be updated, deleted, or queried, nor will
there be attempts to advance past the past-the-end "element", or rewind past the first element.

Input Specification

The first line will contain the integer , the number of operations to perform, up to .

The next lines will contain one of the operation labels, < , > , = , + , - , or ! . If the operation takes a value,
in case of = or + , then the label is followed by a space followed by an integer.

Output Specification

For every ! operation, print the value at the linked list pointer.

Subtasks

There are four subtasks:

1. , , of points
2. , , of points
3. , , of points

Time limit: 2.5s
Java 8: 4.5s

 Memory limit: 10M
Java 8: 12M

N 1 000 000

−8 × 1012 8 × 1012

M 10 000 000

M

N ≤ 1 000 M ≤ 10 000 10%

N ≤ 10 000 M ≤ 100 000 20%

N ≤ 100 000 M ≤ 1 000 000 30%

https://devblogs.microsoft.com/oldnewthing/20030814-00/?p=42903

Page 2 of 3

4. , , of points

Sample Input

10
+ 100
+ 200
>
!
<
!
-
!
= 300
!

Sample Output

100
200
100
300

Explanation

1. Insert to list: , pointer at 0 .
2. Insert to list: , pointer at 0 .
3. Advance pointer: pointer at 1 .
4. Print: prints which is at index 1 of list .
5. Rewind pointer: pointer at 0 .
6. Print: prints which is at index 0 of list .
7. Delete element : , pointer still at 0 .
8. Print: prints which is at index 0 of list .
9. Update to : , pointer at 0 .

10. Print: prints which is at index 0 of list .

Warning

It might be unwise to use languages that use a lot of memory, and even more unwise to use languages that won't start
in the memory limit. Your mileage may vary. Problem is guaranteed to be solvable in any language that allows direct

N ≤ 1 000 000 M ≤ 10 000 000 40%

100 [100]

200 [200, 100]

100 [200, 100]

200 [200, 100]

200 [100]

100 [100]

300 [300]

300 [300]

Page 3 of 3

memory access, such as C, or C++.

