Time limit: 1.0s Memory limit: 512M

There are N cities in JOI Kingdom, which are indexed by the numbers from 1 to N. City 1 is the capital city. Each city has a value called **liveliness** and the initial value of liveliness of city i ($1 \le i \le N$) is C_i . Roads in JOI Kingdom connect two different cities bidirectionally. Initially, there are no roads in JOI Kingdom. You have planned N - 1 constructions of roads. The *j*-th construction ($1 \le j \le N - 1$) is planned to be done in the following way.

- Two cities, A_j and $B_{j'}$ are appointed, when one can go from city 1 to city A_j and cannot go from city 1 to city B_j by using only roads constructed at that time.
- You construct a road connecting city A_j and city B_j. The cost of this construction is the number of pairs of cities (s, t) satisfying the following conditions: City s and City t lie on the shortest path between city 1 and city A_j, and when one goes from city 1 to city A_j he arrives city s before city t, and the value of liveliness of city s is strictly larger than that of city t. Here, cities lying on the path between city 1 and city A_j include city 1 and city A_j. Notice that the shortest path between city 1 and city A_j is unique.
- The values of liveliness of all cities lying on the path between city 1 and city A_j change to the value of liveliness of city B_{j} .

You want to know the cost of each construction.

Input Specification

The first line of input contains an integer N. This means there are N cities in JOI Kingdom.

The second line of input contains N space separated integers C_i . This means the initial value of liveliness of city i is C_i .

Each of following N - 1 lines contains two space separated integers A_j , B_j . This means city A_j and city B_j are appointed for the *j*-th construction of road. By using roads constructed before the *j*-th construction, one can go from city 1 to city A_j and cannot go from city 1 to city B_j ($1 \le j \le N - 1$).

Output Specification

Output N-1 lines to the standard output. The *j*-th line $(1 \le j \le N-1)$ of output contains the cost of the *j*-th construction of road.

Constraints

All input data satisfy the following conditions.

- $1 \leq N \leq 10^5$
- $\bullet \hspace{0.1in} 1 \leq C_i \leq 10^9 \ (1 \leq i \leq N)$
- $1 \leq A_j \leq N \ (1 \leq j \leq N-1)$
- $1 \leq B_j \leq N \ (1 \leq j \leq N-1)$
- By using roads constructed before the *j*-th construction, one can go from city 1 to city A_j and cannot go from city 1 to city B_j $(1 \le j \le N 1)$.

Subtask	Points	Additional constraints
1	7	$N \leq 500$
2	9	$N \leq 4000$
3	84	$N \leq 10^5$

Sample Input 1

Sample Output 1

0 0 2

Explanation for Sample 1

In Sample Input 1, constructions are done as follows:

- In the first construction, there are no pairs (s, t) satisfying the conditions, so the cost is 0. A road connecting city 1 and city 2 is constructed and the value of liveliness of city 1 changes to 2.
- In the second construction, there are no pairs (s, t) satisfying the conditions too, so the cost is 0. A road connecting city 2 and city 3 is constructed and the values of liveliness of city 1 and city 2 change to 3.
- In the third construction, there are no pairs (s, t) satisfying the conditions too, so the cost is 0. A road connecting city 2 and city 4 is constructed and the values of liveliness of city 1 and city 2 change to 4.
- In the fourth construction, two pairs (s,t) = (1,3), (2,3) satisfy the conditions, so the cost is 2. A road connecting city 3 and city 5 is constructed and the values of liveliness of city 1, city 2 and city 3 change to 5.

Sample Input 2

10)								
1	7	3	4	8	6	2	9	10	5
1	2								
1	3								
2	4								
3	5								
2	6								
3	7								
4	8								
5	9								
6	10)							

Sample Output 2

0		
0		
0		
0		
1		
-		
1		
0		
1		
T		
2		
3		