JOI '17 Final P4 - Commuter Pass

Time limit: 1.0s Memory limit: 512M

JOI-kun is living in a city with N stations. The stations are numbered from 1 to N. There are M railways numbered from 1 to M. The railway i ($1 \le i \le M$) connects the station A_i and the station B_i in both directions, and the fare is C_i yen.

JOI-kun is living near the station S, and goes to the IOI high school near the station T. He is planning to buy a commuter pass connecting these two stations. When he buys a commuter pass, he needs to choose a route between the station S and the station T with minimum cost. Using this commuter pass, he can take any railway contained in a chosen route in any direction without additional costs.

JOI-kun often goes to bookstores near the station U and the station V. Therefore, he wants to buy a commuter pass so that the cost from the station U to the station V is minimized. When he moves from the station U to the station V, he first chooses a route from the station U to the station V. Then the fare he has to pay is

- 0 yen if the railway i is contained in a route chosen when he buys a commuter pass, or
- C_i yen if the railway *i* is not contained in a route chosen when he buys a commuter pass.

The sum of the above fare is the cost from the station U to the station V. He wants to know the minimum cost from the station U to the station V if he chooses a route appropriately when he buys a commuter pass.

Input Specification

The first line of input contains two space separated integers N, M. This means the city JOI-kun lives in has N stations and M railways.

The second line contains two space separated integers S, T ($S \neq T$). This means JOI-kun is planning to buy a commuter pass from the station S to the station T.

The third line contains two space separated integers U, V ($U \neq V$). This means JOI-kun wants to minimize the cost from the station U to the station V.

Each of the following M lines contains three space separated integers A_i , B_i , C_i ($1 \le A_i$, $B_i \le N$, $1 \le C_i \le 10^9$). The railway i connects the station A_i and the station B_i in both directions, and the fare is C_i yen.

Output Specification

Write one line to the standard output. The output should contain the minimum cost from the station U to the station V if he chooses a route appropriately when he buys a commuter pass.

Constraints

In all test cases, $1 \leq N \leq 10^5$, $1 \leq M \leq 2 imes 10^5$, S
eq U or T
eq V.

In 16% test cases, S=U.

In another 15% test cases, there is a unique route with minimum cost from the station S to the station T.

In another 24% test cases, $N \leq 300.$

Sample Input 1

66			
16			
14			
121			
231			
351			
243			
452			
561			

Sample Output 1

2

Sample Input 2

8	8				
5	7				
6	8				
1	22				
2	33				
3	44				
1	4 1				
1	55				
2	66				
3	77				
4	88				

Sample Output 2