
IOI '24 P6 - Sphinx's Riddle

The Great Sphinx has a riddle for you. You are given a graph on  vertices. The vertices are numbered from  to .
There are  edges in the graph, numbered from  to . Each edge connects a pair of distinct vertices and is
bidirectional. Specifically, for each  from  to  (inclusive) edge  connects vertices  and . There is at most
one edge connecting any pair of vertices. Two vertices are called adjacent if they are connected by an edge.

A sequence of vertices  (for ) is called a path if each two consecutive vertices  and  (for each  such
that ) are adjacent. We say that a path  connects vertices  and . In the graph given to you, each
pair of vertices is connected by some path.

There are  colours, numbered from  to . Colour  is special and is called the Sphinx's colour. Each vertex is
assigned a colour. Specifically, vertex  ( ) has colour . Multiple vertices may have the same colour, and there
might be colours not assigned to any vertex. No vertex has the Sphinx's colour, that is,  ( ).

A path  (for ) is called monochromatic if all of its vertices have the same colour, i.e.  (for
each  such that ). Additionally, we say that vertices  and  ( , ) are in the same
monochromatic component if and only if they are connected by a monochromatic path.

You know the vertices and edges, but you do not know which colour each vertex has. You want to find out the colours of
the vertices, by performing recolouring experiments.

In a recolouring experiment, you may recolour arbitrarily many vertices. Specifically, to perform a recolouring experiment
you first choose an array  of size , where for each  ( ),  is between  and  inclusive. Then, the colour
of each vertex  becomes , where the value of  is:

, that is, the original colour of , if , or
, otherwise.

Note that this means that you can use the Sphinx's colour in your recolouring.

Finally, the Great Sphinx announces the number of monochromatic components in the graph, after setting the colour of
each vertex  to  ( ). The new colouring is applied only for this particular recolouring experiment, so the
colours of all vertices return to the original ones after the experiment finishes.

Your task is to identify the colours of the vertices in the graph by performing at most  recolouring experiments. You
may also receive a partial score if you correctly determine for every pair of adjacent vertices, whether they have the same
colour.

Implementation Details

You should implement the following procedure.

std::vector<int> find_colours(int N,
    std::vector<int> X, std::vector<int> Y)

Time limit: 1.5s  Memory limit: 1G
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: the number of vertices in the graph.
, : arrays of length  describing the edges.

This procedure should return an array  of length , representing the colours of vertices in the graph.
This procedure is called exactly once for each test case.

The above procedure can make calls to the following procedure to perform recolouring experiments:

int perform_experiment(std::vector<int> E)

: an array of length  specifying how vertices should be recoloured.
This procedure returns the number of monochromatic components after recolouring the vertices according to .
This procedure can be called at most  times.

The grader is not adaptive, that is, the colours of the vertices are fixed before a call to find_colours  is made.

Constraints

 for each  such that .
 or  for each  and  such that .

Each pair of vertices is connected by some path.
 for each  such that .

Subtasks

Subtask Score Additional Constraints

1

2

3 The graph is a path:  and vertices  and  are adjacent ( ).

4 The graph is complete:  and any two vertices are adjacent.

5 No additional constraints.

In each subtask, you can obtain a partial score if your program determines correctly for every pair of adjacent vertices
whether they have the same colour.

More precisely, you get the whole score of a subtask if in all of its test cases, the array  returned by find_colours  is
exactly the same as array  (i.e.  for all  such that ). Otherwise, you get  of the score for a
subtask if the following conditions hold in all of its test cases:

 for each  such that ;
For each  such that :
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 if and only if .

Example

Consider the following call.

find_colours(4, [0, 1, 0, 0], [1, 2, 2, 3])

For this example, suppose that the (hidden) colours of the vertices are given by . This scenario is shown in
the following figure. Colours are additionally represented by numbers on white labels attached to each vertex.

The procedure may call perform_experiment  as follows.

perform_experiment([-1, -1, -1, -1])

In this call, no vertex is recoloured, as all vertices keep their original colours.

Consider vertex  and vertex . They both have colour  and the path  is a monochromatic path. As a result, vertices 
and  are in the same monochromatic component.

Consider vertex  and vertex . Even though both of them have colour , they are in different monochromatic components
as there is no monochromatic path connecting them.

Overall, there are  monochromatic components, with vertices , , and . Thus, this call returns .

Now the procedure may call perform_experiment  as follows.

perform_experiment([0, -1, -1, -1])

In this call, only vertex  is recoloured to colour , which results in the colouring shown in the following figure.

G[X[j]] = G[Y [j]] C[X[j]] = C[Y [j]]

C = [2, 0, 0, 0]

1 2 0 1, 2 1

2

1 3 0

3 {0} {1, 2} {3} 3

0 0



This call returns , as all the vertices belong to the same monochromatic component. We can now deduce that vertices , ,
and  have colour .

The procedure may then call perform_experiment  as follows.

perform_experiment([-1, -1, -1, 2])

In this call, vertex  is recoloured to colour , which results in the colouring shown in the following figure.

This call returns , as there are  monochromatic components, with vertices  and  respectively. We can deduce
that vertex  has colour .

The procedure find_colours  then returns the array . Since , full score is given.

Note that there are also multiple return values, for which  of the score would be given, for example  or
.

Sample Grader

Input format:

1 1 2

3 0

3 2

2 2 {0, 3} {1, 2}

0 2

[2, 0, 0, 0] C = [2, 0, 0, 0]

50% [1, 2, 2, 2]

[1, 2, 2, 3]



N  M
C[0]  C[1] ... C[N-1]
X[0]  Y[0]
X[1]  Y[1]
...
X[M-1]  Y[M-1]

Output format:

L  Q
G[0]  G[1] ... G[L-1]

Here,  is the length of the array  returned by find_colours , and  is the number of calls to perform_experiment .

Attachment Package

The sample grader along with sample test cases are available here.

L G Q

https://dmoj.algome.me/data/ioi/24/ioi24p6/sphinx.zip

