
IOI '20 P1 - Comparing Plants

Hazel the botanist visited a special exhibition in the Singapore Botanical Gardens. In this exhibition, plants of distinct
heights are placed in a circle. These plants are labelled from to in clockwise order, with plant beside
plant .

For each plant , Hazel compared plant to each of the next plants in clockwise order, and wrote
down the number denoting how many of these plants are taller than plant . Thus, each value depends on
the relative heights of some consecutive plants.

For example, suppose , and . The next plants in clockwise order from plant would be
plant and plant . If plant was taller than plant and plant was shorter than plant , Hazel would write down

.

You may assume that Hazel recorded the values correctly. Thus, there is at least one configuration of distinct heights
of plants consistent with these values.

You were asked to compare the heights of pairs of plants. Sadly, you do not have access to the exhibition. Your only
source of information is Hazel's notebook with the value and the sequence of values .

For each pair of different plants and that need to be compared, determine which of the three following situations
occurs:

Plant is definitely taller than plant : in any configuration of distinct heights consistent with
the array we have .
Plant is definitely shorter than plant : in any configuration of distinct heights consistent
with the array we have .
The comparison is inconclusive: neither of the previous two cases applies.

Implementation details

You should implement the following procedure:

void init(int k, std::vector<int> r)

: the number of consecutive plants whose heights determine each individual value .
 : an array of size , where is the number of plants taller than plant among the next plants in clockwise

order.
This procedure is called exactly once, before any calls to compare_plants .

int compare_plants(int x, int y)

: labels of the plants to be compared

Time limit: 2.0s Memory limit: 512M

n

0 n − 1 n − 1

0

i (0 ≤ i ≤ n − 1) i k − 1

r[i] k − 1 i r[i]

k

n = 5 k = 3 i = 3 k − 1 = 2 i = 3

4 0 4 3 0 3

r[3] = 1

r[i]

q

k r[0], … , r[n − 1]

x y

x y h[0], … , h[n − 1]

r h[x] > h[y]

x y h[0], … , h[n − 1]

r h[x] < h[y]

k r[i]

r n r[i] i k − 1

x y

 : labels of the plants to be compared.
This procedure should return:

 if plant is definitely taller than plant ,
 if plant is definitely shorter than plant ,

 if the comparison is inconclusive.
This procedure is called exactly times.

Examples

Example 1

Consider the following call:

init(3, {0, 1, 1, 2})

Let's say the grader calls compare_plants(0, 2) . Since we can immediately infer that plant is not taller
than plant . Therefore, the call should return .

Let's say the grader calls compare_plants(1, 2) next. For all possible configurations of heights that fit the
constraints above, plant is shorter than plant . Therefore, the call should return .

Example 2

Consider the following call:

init(2, {0, 1, 0, 1})

Let's say the grader calls compare_plants(0, 3) . Since , we know that plant is taller than plant .
Therefore, the call should return .

Let's say the grader calls compare_plants(1, 3) next. Two configurations of heights and are
both consistent with Hazel's measurements. Since plant is shorter than plant in one configuration and taller than
plant in the other, this call should return .

Constraints

 for all

There exists one or more configurations of distinct heights of plants consistent with the array .

Subtasks

1. (points)

x, y

1 x y

−1 x y

0

q

r[0] = 0 2

0 1

1 2 −1

r[3] = 1 0 3

1

[3, 1, 4, 2] [3, 2, 4, 1]

1 3

3 0

2 ≤ k ≤ n ≤ 200 000

1 ≤ q ≤ 200 000

0 ≤ r[i] ≤ k − 1 (0 ≤ i ≤ n − 1)

0 ≤ x < y ≤ n − 1

r

5 k = 2

2. (points)
3. (points)
4. (points) The correct answer to each call of compare_plants is or .

5. (points)
6. (points) for each call of compare_plants .
7. (points) No additional constraints.

Sample grader

The sample grader reads the input in the following format:

line :
line :
line : for the -th call to compare_plants

The sample grader prints your answer in the following format:

line : return value of the -th call to compare_plants .

14 n ≤ 5000, 2 ⋅ k > n

13 2 ⋅ k > n

17 1 −1

11 n ≤ 300, q ≤
n⋅(n−1)

2

15 x = 0

25

1 n k q

2 r[0] r[1] … r[n − 1]

3 + i (0 ≤ i ≤ q − 1) x y i

1 + i (0 ≤ i ≤ q − 1) i

