
IOI '19 P4 - Broken Line

Azerbaijan is famous for its carpets. As a master carpet designer you want to make a new design by drawing a broken
line. A broken line is a sequence of line segments in a two-dimensional plane, which is defined by a sequence of
points as follows. For each there is a segment connecting points and .

In order to make the new design, you have already marked dots in a two-dimensional plane. The coordinates of dot
 are . No two dots have the same x or the same y coordinate.

You now want to find a sequence of points , which defines a broken line
that

starts at (that is, and),
contains all of the dots (not necessarily as the endpoints of the segments), and
consists solely of horizontal or vertical segments (two consecutive points defining the broken line have an equal x
or y coordinate).

The broken line is allowed to intersect or overlap itself in any way. Formally, each point of the plane may belong to any
number of segments of the broken line. Your score will depend on the number of segments in the broken line (see
Scoring below).

At IOI, this was an output-only task. You were given the input files and had to submit a zip file containing your
solutions to the test cases. Unfortunately, a similar output-only format is not currently possible on DMOJ since any files
you submit can be at most characters long. Instead, you will submit a program that will be run on the test cases
like for a normal problem. This means it will read the input file from standard input and write the solution to standard
output. We will still provide you with the input files, and the time limit for the problem will be very high. You can use the
value of and the first point to determine which case your program is being run on if you want to write a solution with
significantly different behaviour on the different test cases.

Input Specification

Each input file is in the following format:

line :
line (for):

Output Specification

Your solution must output the broken line in the following format:

line :
line (for):

Note that the second line should contain and (i.e., the output should not contain and). Each
 and should be an integer.

Time limit: 30.0s Memory limit: 1G

t t + 1

p0, … , pt 0 ≤ j ≤ t − 1 pj pj+1

n i

(1 ≤ i ≤ n) (x[i], y[i])

(sx[0], sy[0]), (sx[1], sy[1]), … , (sx[k], sy[k])

(0, 0) sx[0] = 0 sy[0] = 0

10

65 536

n

1 n

1 + i 1 ≤ i ≤ n x[i] y[i]

1 k

1 + j 1 ≤ j ≤ k sx[j] sy[j]

sx[1] sy[1] sx[0] sy[0]

sx[j] sy[j]

Example

For the sample input:

4
2 1
3 3
4 4
5 2

a possible valid output is

6
2 0
2 3
5 3
5 2
4 2
4 4

Please note this example is not among the actual inputs of this task.

Constraints

All values of and are integers.
No two dots have the same or the same coordinates, i.e. and for .

1 ≤ n ≤ 100 000

1 ≤ x[i], y[i] ≤ 109

x[i] y[i]

x y x[i1] ≠ x[i2] y[i1] ≠ y[i2] i1 ≠ i2

−2 ⋅ 109 ≤ sx[j], sy[j] ≤ 2 ⋅ 109

Scoring

For each test case, you can get up to points. Your output for a test case will get points if it does not specify a
broken line with the required properties. Otherwise, the score will be determined using a decreasing sequence

, which varies by test case.

Assume that your solution is a valid broken line consisting of segments. Then, you will get

 points, if (for),
 points, if (for),

 points, if ,
 points, if .

The sequence for each test case is given below.

Test cases 01 02 03 04 05 06 07-10

Visualizer

In the attachments of this task, there is a script that allows you to visualize input and output files.

To visualize an input file, use the following command:

python vis.py [input file]

10 0

c1, … , c10

i k = ci 1 ≤ i ≤ 10

i + ci−k

ci−ci+1
ci+1 < k < ci 1 ≤ i ≤ 9

0 k > c1

10 k < c10

c1, … , c10

n 20 600 5 000 50 000 72 018 91 891 100 000

c1 50 1 200 10 000 100 000 144 036 183 782 200 000

c2 45 937 7 607 75 336 108 430 138 292 150 475

c3 40 674 5 213 50 671 72 824 92 801 100 949

c4 37 651 5 125 50 359 72 446 92 371 100 500

c5 35 640 5 081 50 203 72 257 92 156 100 275

c6 33 628 5 037 50 047 72 067 91 941 100 050

c7 28 616 5 020 50 025 72 044 91 918 100 027

c8 26 610 5 012 50 014 72 033 91 906 100 015

c9 25 607 5 008 50 009 72 027 91 900 100 009

c10 23 603 5 003 50 003 72 021 91 894 100 003

You can also visualize your solution for some input, using the following command. Due to technical limitations, the
provided visualizer shows only the first segments of the output file.

python vis.py [input file] --solution [output file]

Example:

python vis.py examples/00.in --solution examples/00.out

Note that the visualizer depends on the matplotlib package which you will have to install yourself.

Attachment Package

The test cases and the visualizer are available here.

1000

https://matplotlib.org/stable/users/installing/index.html
https://dmoj.algome.me/data/ioi/19/ioi19p4/ioi19p4.zip

