
IOI '18 P3 - Werewolf

There are cities and roads in Ibaraki Prefecture, Japan. Cities are numbered from through in the
increasing order of their population. Each road connects a pair of distinct cities, and can be traveled in both directions.
You can travel from any city to any other city by using one or more of these roads.

You planned trips, numbered from through . The trip is to travel from the city to the
city .

You are a werewolf. You have two forms: human form and wolf form. At the beginning of each trip you are in human
form. At the end of each trip, you must be in wolf form. During the trip you have to transform (change from human
form to wolf form) exactly once. You can transform only when you are in some city (possibly or).

Living as a werewolf is not easy. You must avoid low-populated cities when you are in human form, and avoid highly-
populated cities when you are in wolf form. For each trip , there are two thresholds and

 that indicate which cities must be avoided. More specifically, you must avoid the cities
 when you are in human form, and must avoid the cities when you are in

wolf form. This means in the trip , you can only transform in one of the cities .

Your task is to determine, for each trip, whether it is possible to travel from the city to the city in a way that
satisfies the aforementioned constraints. The route you take can have an arbitrary length.

Implementation details

You should implement the following function:

std::vector<int> check_validity(int N, std::vector<int> X, std::vector<int> Y,
std::vector<int> S, std::vector<int> E, std::vector<int> L, std::vector<int> R)

: the number of cities.
 and : arrays of length . For each , the city X[j] is directly connected to the city Y[j]

by a road.
, , , and : arrays of length , representing the trips.

Note that the values of and are the lengths of the arrays, and can be obtained as indicated in the implementation
notice.

The function check_validity is called exactly once for each test case. This function should return an array of
integers of length . The value of must be if the trip is possible while satisfying the
aforementioned conditions, or otherwise.

Example

Time limit: 1.8s Memory limit: 512M

N M 0 N − 1

Q 0 Q − 1 i (0 ≤ i ≤ Q − 1) Si

Ei

Si Ei

i (0 ≤ i ≤ Q − 1) Li Ri

(0 ≤ Li ≤ Ri ≤ N − 1)

0, 1, … , Li − 1 Ri + 1, Ri + 2, … , N − 1

i Li, Li + 1, … , Ri

Si Ei

N

X Y M j (0 ≤ j ≤ M − 1)

S E L R Q

M Q

A

Q Ai (0 ≤ i ≤ Q − 1) 1 i

0

Let , , , , , , , ,
.

check_validity(6, {5, 1, 1, 3, 3, 5}, {1, 2, 3, 4, 0, 2}, {4, 4, 5}, {2, 2, 4}, {1, 2, 3}, {2,
2, 4})

For the trip , you can travel from the city to the city as follows:

Start at city (You are in human form)
Move to the city (You are in human form)
Move to city (You are in human form)
Transform yourself into wolf form (You are in wolf form)
Move to the city (You are in wolf form)

For the trips and , you cannot travel between the given cities.

Hence, your program should return [1, 0, 0] .

Constraints

For each

You can travel from any city to any other city by using roads.
Each pair of cities are directly connected by at most one road. In other words, for all ,

 and .
For each

N = 6 M = 6 Q = 3 X = [5, 1, 1, 3, 3, 5] Y = [1, 2, 3, 4, 0, 2] S = [4, 4, 5] E = [2, 2, 4] L = [1, 2, 3]

R = [2, 2, 4]

0 4 2

4

3

1

2

1 2

2 ≤ N ≤ 200 000

N − 1 ≤ M ≤ 400 000

1 ≤ Q ≤ 200 000

0 ≤ j ≤ M − 1

0 ≤ Xj ≤ N − 1

0 ≤ Yj ≤ N − 1

Xj ≠ Yj

0 ≤ j < k ≤ M − 1

(Xj, Yj) ≠ (Xk, Yk) (Yj, Xj) ≠ (Xk, Yk)

0 ≤ i ≤ Q − 1

0 ≤ Li ≤ Si ≤ N − 1

0 ≤ Ei ≤ Ri ≤ N − 1

Si ≠ Ei

Li ≤ Ri

Subtasks

Subtask Points Constraints

 points , ,

 points , ,

points
 and each city is incident to at most roads (the cities are

connected in a line)

points
No additional constraints

Sample Grader

The sample grader reads the input in the following format:

line :
line :
line :

The sample grader prints the return value of check_validity in the following format:

line :

1 7 N ≤ 100 M ≤ 200 Q ≤ 100

2 8 N ≤ 3 000 M ≤ 6 000 Q ≤ 3 000

3 34 M = N − 1 2

4 51

1 N M Q

2 + j (0 ≤ j ≤ M − 1) Xj Yj

2 + M + i (0 ≤ i ≤ Q − 1) Si Ei Li Ri

1 + i (0 ≤ i ≤ Q − 1) Ai

