
IOI '18 P2 - Seats

You are going to hold an international programming contest in a rectangular hall, which has seats arranged in
rows and columns. The rows are numbered from through and the columns are numbered from through

. The seat in row and column is denoted by . You invited contestants, numbered from through
. You also made a seating chart, which assigns the contestant to the seat . The

chart assigns exactly one contestant to each seat.

A set of seats in the hall is said to be rectangular if there are integers , , , and satisfying the following
conditions:

 is exactly the set of all seats such that and .

A rectangular set consisting of seats , is beautiful if the contestants whose assigned seats are in the
set have numbers from through . The beauty of a seating chart is the number of beautiful rectangular sets of
seats in the chart.

After preparing your seating chart, you receive several requests to swap two seats assigned to two contestants. More
precisely, there are such requests numbered from through in chronological order. The request

 is to swap the seats assigned to contestants and . You accept each request immediately and
update the chart. After each update, your goal is to compute the beauty of the current seating chart.

Implementation Details

You should implement the following procedure and function:

void give_initial_chart(int H, int W, std::vector<int> R, std::vector<int> C)

: the number of rows and the number of columns.
: arrays of length representing the initial seating chart.

This procedure is called exactly once, and before any call to swap_seats .

int swap_seats(int a, int b)

This function describes a request to swap two seats.
: contestants whose seats are to be swapped.

This function is called times.
This function should return the beauty of the seating chart after the swap.

Time limit: 3.0s Memory limit: 256M

HW H

W 0 H − 1 0

W − 1 r c (r, c) HW 0

HW − 1 i (0 ≤ i ≤ HW − 1) (Ri, Ci)

S r1 r2 c1 c2

0 ≤ r1 ≤ r2 ≤ H − 1

0 ≤ c1 ≤ c2 ≤ W − 1

S (r, c) r1 ≤ r ≤ r2 c1 ≤ c ≤ c2

k (1 ≤ k ≤ HW)

0 k − 1

Q 0 Q − 1 j

(0 ≤ j ≤ Q − 1) Aj Bj

H, W

R, C HW

a, b

Q

Example

Let , , , , and .

The grader first calls give_initial_chart(2, 3, [0, 1, 1, 0, 0, 1], [0, 0, 1, 1, 2, 2]) .

At first, the seating chart is as follows.

Let's say the grader calls swap_seats(0, 5) . After the request , the seating chart is as follows.

The sets of seats corresponding to the contestants , , and are rectangular and beautiful.
Thus, the beauty of this seating chart is , and swap_seats should return .

Let's say the grader calls swap_seats(0, 5) again. After the request , the seating chart goes back to the initial state.
The sets of seats corresponding to the contestants , , , and are rectangular and
beautiful. Hence, the beauty of this seating chart is , and swap_seats should return .

The files sample-01-in and sample-01-out in the zipped attachment package correspond to this example. Other
sample inputs/outputs are also available in the package.

Constraints

 for any call to swap_seats

 for any call to swap_seats

 for any call to swap_seats

Subtasks

1. (points) ,
2. (points) ,
3. (points) , ,
4. (points) , for any call to swap_seats

5. (points)

H = 2 W = 3 R = [0, 1, 1, 0, 0, 1] C = [0, 0, 1, 1, 2, 2] Q = 2

0 3 4

1 2 5

0

5 3 4

1 2 0

{0} {0, 1, 2} {0, 1, 2, 3, 4, 5}

3 3

1

{0} {0, 1} {0, 1, 2, 3} {0, 1, 2, 3, 4, 5}

4 4

1 ≤ H

1 ≤ W

HW ≤ 1 000 000

0 ≤ Ri ≤ H − 1 (0 ≤ i ≤ HW − 1)

0 ≤ Ci ≤ W − 1 (0 ≤ i ≤ HW − 1)

(Ri, Ci) ≠ (Rj, Cj) (0 ≤ i < j ≤ HW − 1)

1 ≤ Q ≤ 50 000

0 ≤ a ≤ HW − 1

0 ≤ b ≤ HW − 1

a ≠ b

5 HW ≤ 100 Q ≤ 5 000

6 HW ≤ 10 000 Q ≤ 5 000

20 H ≤ 1 000 W ≤ 1 000 Q ≤ 5 000

6 Q ≤ 5 000 |a − b| ≤ 10 000

33 H = 1

6. (points) No additional constraints

Sample Grader

The sample grader reads the input in the following format:

line :
line :
line :

Here, and are parameters for the call to swap_seats for the request .

The sample grader prints your answers in the following format:

line : the return value of swap_seats for the request .

Attachment Package

The sample grader along with sample test cases are available here.

30

1 H W Q

2 + i (0 ≤ i ≤ HW − 1) Ri Ci

2 + HW + j (0 ≤ j ≤ Q − 1) Aj Bj

Aj Bj j

1 + j (0 ≤ j ≤ Q − 1) j

https://dmoj.algome.me/data/ioi/18/ioi18p2/ioi18p2.zip

