
IOI '16 P4 - Paint by Numbers

Paint By Numbers is a well-known puzzle game. We consider a simple one-dimensional version of this puzzle. In this
puzzle, the player is given a row of cells. The cells are numbered 0 through from the left to the right. The player
has to paint each cell black or white. We use X to denote black cells and _ to denote white cells.

The player is given a sequence of positive integers: the clues. He has to paint the cells in a way such
that the black cells in the row form exactly blocks of consecutive cells. Moreover, the number of black cells in the
block (-based) from the left should be equal to . For example, if the clues are , the solved puzzle must have
exactly two blocks of consecutive black cells: one of length and then another of length . Hence, if and

, one solution satisfying the clues is _XXX__XXXX . Note that XXXX_XXX__ does not satisfy the clues
because the blocks of black cells are not in the correct order. Also, __XXXXXXX_ does not satisfy the clues because
there is a single block of black cells, not two separate blocks.

You are given a partially solved Paint By Numbers puzzle. That is, you know and , and additionally you know that
some cells must be black and some cells must be white. Your task is to deduce additional information about the cells.

Specifically, a valid solution is one that satisfies the clues, and also agrees with the colours of the known cells. Your
program should find cells that are painted black in every valid solution, and cells that are painted white in every valid
solution.

You may assume that the input is such that there is at least one valid solution.

Implementation Details

You should implement the following function (method):

std::string solve_puzzle(std::string s, int k, int c[])

s : string of length . For each character is:
X , if cell must be black,
_ , if cell must be white,
. , if there is no information about cell .

k : the length of array c

c : array of length containing clues, as defined above,
the function should return a string of length . For each character of the output string should
be:

X , if cell is black in every valid solution,
_ , if cell is white in every valid solution,
? , otherwise (i.e., if there exist two valid solutions such that cell is black in one of them and white in the

other one).

Time limit: 1.0s Memory limit: 1G

n n − 1

c = [c0 … ck−1] k

k ith

0 ci c = [3, 4]

3 4 n = 10

c = [3, 4]

n c

n i (0 ≤ i ≤ n − 1) i

i

k

n i (0 ≤ i ≤ n − 1) i

i

i

i

Examples

Example 1

solve_puzzle("..........", 2, {3, 4})

These are all possible valid solutions of the puzzle:

XXX_XXXX__ ,
XXX__XXXX_ ,
XXX___XXXX ,
_XXX_XXXX_ ,
_XXX__XXXX ,
__XXX_XXXX .

One can observe that the cells with (0-based) indices 2, 6, and 7 are black in each valid solution. Each of the other cells
can be, but does not have to be black. Hence, the correct answer is ??X???XX?? .

Example 2

solve_puzzle("........", 2, {3, 4})

In this example the entire solution is uniquely determined and the correct answer is XXX_XXXX .

Example 3

solve_puzzle("..._._....", 1, {3})

In this example we can deduce that cell 4 must be white as well — there is no way to fit three consecutive black cells
between the white cells at indices 3 and 5. Hence, the correct answer is ???___???? .

Example 4

solve_puzzle(".X........", 1, {3})

There are only two valid solutions that match the above description:

XXX_______ ,
_XXX______ .

Thus, the correct answer is ?XX?______ .

Subtasks

In all subtasks and for each .

1. (7 points) , , contains only . (empty puzzle),
2. (3 points) , contains only . ,
3. (22 points) , contains only . ,
4. (27 points) , contains only . and _ (information about white cells),
5. (21 points) ,
6. (10 points) , ,
7. (10 points) , .

1 ≤ k ≤ n 1 ≤ ci ≤ n 0 ≤ i ≤ k − 1

n ≤ 20 k = 1 s

n ≤ 20 s

n ≤ 100 s

n ≤ 100 s

n ≤ 100

n ≤ 5 000 k ≤ 100

n ≤ 200 000 k ≤ 100

