IOI '14 P6 - Holiday

Time limit: 1.8s Memory limit: 256M

Jian-Jia is planning his next holiday in Taiwan. During his holiday, Jian-Jia moves from city to city and visits attractions in the cities.

There are *n* cities in Taiwan, all located along a single highway. The cities are numbered consecutively from 0 to n - 1. For city *i*, where 0 < i < n - 1, the adjacent cities are i - 1 and i + 1. The only city adjacent to city 0 is city 1, and the only city adjacent to city n - 1 is city n - 2.

Each city contains some number of attractions. Jian-Jia has d days of holiday and plans to visit as many attractions as possible. Jian-Jia has already selected a city in which to start his holiday. In each day of his holiday Jian-Jia can either move to an adjacent city, or else visit all the attractions of the city he is staying, but not both. Jian-Jia will *never visit the attractions in the same city twice* even if he stays in the city multiple times. Please help Jian-Jia plan his holiday so that he visits as many different attractions as possible.

Example

Suppose Jian-Jia has 7 days of holiday, there are 5 cities (listed in the table below), and he starts from city 2. On the first day Jian-Jia visits the 20 attractions in city 2. On the second day Jian-Jia moves from city 2 to city 3, and on the third day visits the 30 attractions in city 3. Jian-Jia then spends the next three days moving from city 3 to city 0, and visits the 10 attractions in city 0 on the seventh day. The total number of attractions Jian-Jia visits is 20 + 30 + 10 = 60, which is the maximum number of attractions Jian-Jia can visit in 7 days when he starts from city 2.

city	number of attractions
0	10
1	2
2	20
3	30
4	1

day	action		
1	visit the attractions in city 2		
2	move from city 2 to city 3		
3	visit the attractions in city 3		
4	move from city 3 to city 2		
5	move from city 2 to city 1		

6 move from city 1 to city 07 visit the attractions in city 0

Task

Please implement a function findMaxAttraction that computes the maximum number of attractions Jian-Jia can visit.

- findMaxAttraction(n, start, d, attraction)
 - n: the number of cities.
 - **start**: the index of the starting city.
 - d: the number of days.
 - [attraction]: array of length n; [attraction[i]] is the number of attractions in city i, for $0 \le i \le n-1$.
 - The function should return the maximum number of attractions Jian-Jia can visit.

Subtasks

In all subtasks $0 \le d \le 2n + \lfloor n/2 \rfloor$, and the number of attractions in each city is non-negative.

Additional constraints:

subtask	points	n	maximum number of attractions in a city	starting city
1	7	$2 \leq n \leq 20$	1000000000	no constraints
2	23	$2 \leq n \leq 100000$	100	city 0
3	17	$2 \leq n \leq 3000$	1000000000	no constraints
4	53	$2 \leq n \leq 100000$	1000000000	no constraints

Implementation details

Your submission should implement the subprogram described above using the following signatures.

Note that the result may be large, and the return type of findMaxAttraction is a 64-bit integer.

C/C++ program

long long int findMaxAttraction(int n, int start, int d, int attraction[]);

Pascal program

function findMaxAttraction(n, start, d : longint; attraction : array of longint): int64;