
IOI '14 P4 - Gondola

Mao-Kong Gondola is a famous attraction in Taipei. The gondola system consists of a circular rail, a single station, and
gondolas numbered consecutively from to running around the rail in a fixed direction. After gondola passes the
station, the next gondola to pass the station will be gondola if , or gondola 1 if .

Gondolas may break down. Luckily we have an infinite supply of spare gondolas, which are numbered , , and
so on. When a gondola breaks down we replace it (in the same position on the track) with the first available spare
gondola, that is, the one with the lowest number. For example, if there are five gondolas and gondola 1 breaks down,
then we will replace it with gondola 6.

You like to stand at the station and watch the gondolas as they pass by. A gondola sequence is a sequence of numbers
of gondolas that pass the station. It is possible that one or more gondolas broke down (and were replaced) before you
arrived, but none of the gondolas break down while you are watching.

Note that the same configuration of gondolas on the rail can give multiple gondola sequences, depending on which
gondola passes first when you arrive at the station. For example, if none of the gondolas have broken down then both

 and are possible gondola sequences, but is not (because the gondolas appear
in the wrong order).

If gondola 1 breaks down, then we might now observe the gondola sequence . If gondola 4 breaks down
next, we replace it with gondola 7 and we might observe the gondola sequence . If gondola 7 breaks down
after this, we replace it with gondola 8 and we may now observe the gondola sequence .

broken gondola new gondola possible gondola sequence

1 6

4 7

7 8

A replacement sequence is a sequence consisting of the numbers of the gondolas that have broken down, in the order in
which they break down. In the previous example the replacement sequence is . A replacement sequence
produces a gondola sequence if, after gondolas break down according to the replacement sequence , the gondola
sequence may be observed.

Gondola Sequence Checking

In the first three subtasks you must check whether an input sequence is a gondola sequence. See the table below for
examples of sequences that are and are not gondola sequences. You need to implement a function valid .

valid(n, inputSeq)

n : the length of the input sequence.
inputSeq : array of length ; inputSeq[i] is element of the input sequence, for .

Time limit: 1.0s Memory limit: 256M

n

1 n i

i + 1 i < n i = n

n + 1 n + 2

n

(2, 3, 4, 5, 1) (4, 5, 1, 2, 3) (4, 3, 2, 5, 1)

(4, 5, 6, 2, 3)

(6, 2, 3, 7, 5)

(3, 8, 5, 6, 2)

(4, 5, 6, 2, 3)

(6, 2, 3, 7, 5)

(3, 8, 5, 6, 2)

(1, 4, 7) r

g r

g

n i 0 ≤ i ≤ n − 1

The function should return 1 if the input sequence is a gondola sequence, or 0 otherwise.

Subtasks 1, 2, 3

subtask points inputSeq

1 5 has each number from to exactly once

2 5

3 10

Examples

subtask inputSeq return value note

1 {1, 2, 3, 4, 5, 6, 7} 1

1 {3, 4, 5, 6, 1, 2} 1

1 {1, 5, 3, 4, 2, 7, 6} 0 1 cannot appear just before 5

1 {4, 3, 2, 1} 0 4 cannot appear just before 3

2 {1, 2, 3, 4, 5, 6, 5} 0 two gondolas numbered 5

3 {2, 3, 4, 9, 6, 7, 1} 1 replacement sequence {5, 8}

3 {10, 4, 3, 11, 12} 0 4 cannot appear just before 3

Replacement Sequence

In the next three subtasks you must construct a possible replacement sequence that produces a given gondola
sequence. Any such replacement sequence will be accepted. You need to implement a function replacement .

replacement(n, gondolaSeq, replacementSeq)

n is the length of the gondola sequence.
gondolaSeq : array of length ; gondolaSeq is guaranteed to be a gondola sequence, and
gondolaSeq[i] is element of the sequence, for .

The function should return , the length of the replacement sequence.
replacementSeq : array that is sufficiently large to store the replacement sequence; you should return your

sequence by placing element of your replacement sequence into replacementSeq[i] , for .

Subtasks 4, 5, 6

subtask points gondolaSeq

4 5

n

n ≤ 100 1 n

n ≤ 100 000 1 ≤ inputSeq[i] ≤ n

n ≤ 100 000 1 ≤ inputSeq[i] ≤ 250 000

n

i 0 ≤ i ≤ n − 1

l

i 0 ≤ i ≤ l − 1

n

n ≤ 100 1 ≤ gondolaSeq[i] ≤ n + 1

5 10

6 20

Examples

subtask inputSeq return value replacementSeq

4 {3, 1, 4} 1 {2}

4 {5, 1, 2, 3, 4} 0 {}

5 {2, 3, 4, 9, 6, 7, 1} 2 {5,8}

Count Replacement Sequences

In the next four subtasks you must count the number of possible replacement sequences that produce a given sequence
(which may or may not be a gondola sequence), modulo . You need to implement a function
countReplacement .

countReplacement(n, inputSeq)

n : the length of the input sequence.
inputSeq : array of length ; inputSeq[i] is element of the input sequence, for .

If the input sequence is a gondola sequence, then count the number of replacement sequences that produce
this gondola sequence (which could be extremely large), and return this number modulo . If the
input sequence is not a gondola sequence, the function should return 0. If the input sequence is a gondola
sequence but no gondolas broke down, the function should return 1.

Subtasks 7, 8, 9, 10

subtask points inputSeq

7 5

8 15 , and at least of the initial gondolas did
not break down.

9 15

10 10

Examples

subtask inputSeq return value replacement sequence

7 {1, 2, 7, 6} 2 {3, 4, 5} or {4, 5, 3}

8 {2, 3, 4, 12, 6, 7, 1} 1 {5, 8, 9, 10, 11}

n ≤ 1 000 1 ≤ gondolaSeq[i] ≤ 5 000

n ≤ 100 000 1 ≤ gondolaSeq[i] ≤ 250 000

1 000 000 009

n 0 ≤ i ≤ n − 1

1 000 000 009

n

4 ≤ n ≤ 50 1 ≤ inputSeq[i] ≤ n + 3

4 ≤ n ≤ 500 1 ≤ inputSeq[i] ≤ 100 n − 3 1, … , n

n ≤ 100 000 1 ≤ inputSeq[i] ≤ 250 000

n ≤ 100 000 1 ≤ inputSeq[i] ≤ 1 000 000 000

9 {4, 7, 4, 7} 0 inputSeq is not a gondola sequence

10 {3, 4} 2 {1, 2} or {2, 1}

Implementation details

Your submission should implement all three subprograms described above (even if you only plan to solve some of the
subtasks), using the following signatures.

C/C++ programs

int valid(int n, int inputSeq[]);
int replacement(int n, int gondolaSeq[], int replacementSeq[]);
int countReplacement(int n, int inputSeq[]);

Pascal programs

function valid(n: longint; inputSeq: array of longint): integer;
function replacement(n: longint; gondolaSeq: array of longint; var replacementSeq: array of
longint): longint;
function countReplacement(n: longint; inputSeq: array of longint): longint;

