
Page 1 of 2

IOI '01 P2 - Ioiwari Game

The Mancala family of games with beads and pits is among the oldest forms of human entertainment. This task
introduces a version of the game especially developed for the IOI. The game is played by two players on a round board
with seven pits around the edge. In addition, there is a bank for each player. The game begins by randomly distributing

 beads into the pits so that each pit contains at least and at most beads. The two players move alternately. To
move, the player chooses a non-empty pit and takes all beads out of the pit, and holds them in her hand. As long as
there are beads in the player's hand, she considers the pits in clockwise order, starting one after the emptied one, and
performs the following operations:

More than one bead in your hand: If the current pit already contains beads, then take one bead out of the current
pit and place it into your bank, otherwise place one bead from your hand into the current pit.
One bead in your hand: If the current pit contains at least one and at most four beads then move all beads from the
pit and the one from your hand into your bank, otherwise (the pit contains or beads) place the bead in your
hand into the opponent's bank.

The game is over when after a move all pits are empty and the winner is the player with the most beads in her bank.

The starting player always has a winning strategy. You are to write a program, which plays Ioiwari as the starting player
and wins. The evaluation opponent plays optimally, that is, once given a chance, it will win and your program will lose.

Input and Output Specification

Your program reads input from standard input and writes output to standard output. Your program is player 1, and the
opponent is player 2. When your program is started, it must first read a line with integers : the initial number
of beads in pits , respectively. The pits are labeled with integers from to in clockwise direction on the board.
After this, the game starts with empty banks. Your program should play as follows:

If it is your program's turn to move, then your program should write the label of the pit describing the move to
standard output.
If it is your program's opponent's turn to move, then your program should read the label of the pit defining the
move (the pit from which the beads are removed) from standard input.

In the examples below, you are reading the last integer of the input into variable last and the variable mymove

contains your move.

If you program in C++ and use iostream , you should use the following implementation for reading standard input
and writing to standard output:

cout << mymove << endl;
cin >> last;

Time limit: 1.0s Memory limit: 32M

20 2 4

5

0 5

7 p1, … , p7

1, … , 7 1 7

Page 2 of 2

If you program in C or C++ and use scanf and printf , you should use the following implementation for reading
standard input and writing to standard output:

printf("%d\n", mymove); fflush(stdout);
scanf("%d", &last);

If you program in Pascal, you should use the following implementation of reading standard input and writing to
standard output:

Writeln(mymove);
Readln(last);

Example

Here is a correct sequence of 6 moves:

Pit and bank contents after the operation

Operation/Pit label 1. 2. 3. 4. 5. 6. 7. Bank 1 Bank 2

Initial situation 4 3 2 4 2 3 2 0 0

Player 1's move: 2 4 0 3 5 0 3 2 3 0

Player 2's move: 3 4 0 0 4 1 4 0 3 4

Player 1's move: 5 4 0 0 4 0 0 0 8 4

Player 2's move: 4 0 0 0 0 1 1 1 8 9

Player 1's move: 5 0 0 0 0 0 0 1 10 9

Player 2's move: 7 0 0 0 0 0 0 0 11 9

Scoring

If your program wins a test run, then you get points for that test, a tie in a test gives you points for that test, and
otherwise you get points for a test.

4 2

0

