Time limit: 2.5s Memory limit: 16M

A closed interval $[a \dots b]$ contains the integers $a, a + 1, \dots, b$. You are given N closed intervals $[a_i \dots b_i]$ $(0 \le N \le 100\,000)$, with a_i and b_i in the range $[-10^9 \dots 10^9]$, and Q $(0 \le Q \le 100\,000)$ queries of the form "how many intervals contain this integer x?" (where $-2 \times 10^9 \le x \le 2 \times 10^9$). Determine the answer to each query.

Input Specification

Line 1: Two space-separated integers, N and Q.

Next N lines: Two space-separated integers each, a_i and b_i , denoting one closed interval.

Next \boldsymbol{Q} lines: One integer each, denoting a single query.

Output Specification

Print the answer to each query on its own line.

Sample Input

3 10			
03			
2 4			
3 7			
-1			
0			
1			
2			
3			
4			
5			
6			
7			
8			

Sample Output

0			
1			
1			
2			
3			
2			
1			
1			
1			
0			

Note: In test cases worth 25% of the points, a_i and b_i will be in the range $[-1\,000\dots1\,000]$.