Inaho was thinking of a tree problem, when he came up with this rather beautiful problem!

Given a tree originally rooted at 1 containing N nodes each with a value v_i and an arbitrary value K, support Q of the following operations:

- $\ensuremath{\mathbb{1}}\xspace{\mathsf{R}}$ Reroot the tree so that node R is the root.
- 2 a b Print the highest common ancestor of nodes a and b.
- 3 a b Print the sum of all nodes' v_i on the path from a to b, inclusive.
- 4 a b Print the product of all nodes' v_i on the path from a to b, inclusive, modulo $10^9 + 7$.
- 5 a b Print the minimum of all nodes' v_i on the path from a to b, inclusive.
- 6 a b Print the maximum of all nodes' v_i on the path from a to b, inclusive.
- 7 a b Print the greatest common divisor of all nodes' v_i on the path from a to b, inclusive.
- 8 a b Print the bitwise AND of all nodes' v_i on the path from a to b, inclusive.
- 9 a b Print the bitwise OR of all nodes' v_i on the path from a to b, inclusive.
- 10 a b Print the bitwise XOR of all nodes' v_i on the path from a to b, inclusive.
- 11 a b Print the number of nodes whose $v_i > K$ on the path from a to b, inclusive.
- 12 a b Print the number of nodes whose $v_i < K$ on the path from a to b, inclusive.
- 13 a b Print the value v_i that minimizes $v_i K$, and $v_i > K$ of all nodes on the path from a to b, inclusive. Print K if there is no such node where $v_i > K$.
- 14 a b Print the value v_i that minimizes $K v_i$, and $v_i < K$ of all nodes on the path from a to b, inclusive. Print K if there is no such node where $v_i < K$.

It is guaranteed $1 \leq a, b, R \leq N$.

Input Specification

The first line will contain three space-separated integers, N, Q, K ($1 \le N, Q \le 10^5, 1 \le K \le 1000$), the number of nodes, the number of operations, and the arbitrary value K, respectively.

The second line will contain N space-separated integers, v_1, v_2, \ldots, v_N $(1 \le v_i \le 1\,000)$, the values of each node.

The next N-1 lines will each contain two space-separated integers, a, b ($1 \le a, b \le N$), indicating that nodes a and b are connected by an edge. It is guaranteed the entire tree is connected.

The next Q lines will each contain a valid operation as defined above.

Output Specification

For each operation that requires something to be outputted (everything except operation 1), print the answer on its own line.

Sample Input

6	15	3			
4	10	2	2	5	1
1	2				
1	3				
3	4				
3	5				
3	6				
2	1 2	2			
1	3				
2	1 2	2			
3	2 !	5			
4	4 :	1			
5	1 (5			
6	3 !	5			
7	2	3			
8	3 4	4			
9	5 3	3			
10) 6	2			
11	2	6			
12	2 3	1			
13	34	5			
14	1	2			

Sample Output

1			
3			
21			
16			
1			
5			
2			
2			
7			
13			
2			
1			
5			
3			