Time limit: 1.0s Memory limit: 256M

Ryan is completing his math assignment where he stumbles upon a curious problem: find the number of pairs of positive integers (a, b) that satisfy the equation $\frac{1}{a} + \frac{1}{b} = \frac{1}{2}$. The assignment is too easy for him, so he generalises the problem: find the number of ordered pairs of positive integers (a, b) which satisfy $\frac{1}{a} + \frac{1}{b} = \frac{1}{c}$ for a given positive integer c.

Can you help Ryan solve this redesigned math problem?

Constraints

For all subtasks:

 $1 \le T \le 10^{5}$ $1 \le c \le 10^{7}$ **Subtask 1 [5%]** c = 2 **Subtask 2 [45%]** $1 \le T \le 10^{3}$ $1 \le c \le 5 \times 10^{4}$ **Subtask 3 [50%]** No additional constraints.

Input Specification

The first line contains a single integer T, the number of test cases.

The following T lines each contain a single integer c.

Output Specification

For each test case, print a single integer, the number of ordered positive integer pairs (a, b) that satisfy $\frac{1}{a} + \frac{1}{b} = \frac{1}{c}$. It can be proven that the answer can fit in a 64-bit signed integer.

Sample Input

2	
_	
1	
т	

3

Sample Output

1 3

Sample Explanation

For the first test case, only (2,2) satisfies the condition.

For the second test case, (4, 12), (6, 6) and (12, 4) satisfy the condition.