Given an N dimensional grid with coordinates in the form (x_1, x_2, \ldots, x_N) , determine the number of shortest paths from $(1, 1, \ldots, 1)$ to (a_1, a_2, \ldots, a_N) , that do not pass through Q blocked points.

A path consists of a series of movements where for any single movement, you must increase a single x_i by 1 unit.

Input Specification

The first line will contain a single integer, N, $1 \le N \le 1000$.

The next line will contain N integers representing (a_1, a_2, \ldots, a_N) , $1 \le a_i \le 1000$.

The next line will contain a single integer, Q, $0 \leq Q \leq 1000$.

The next Q lines will each contain a single coordinate point (x_1, x_2, \ldots, x_N) , $1 \le x_i \le a_i$.

The Q points will be unique and will not include (a_1, a_2, \ldots, a_N) or $(1, 1, \ldots, 1)$.

Output Specification

The number of ways to traverse the grid, modulo $10^9 + 7$.

Sample Input

2	
3 4	
2	
2 2	
1 4	

Sample Output

3