
Google Kickstart '17 Round F Problem A - Kicksort

Here at Kickstart, we are fans of the well-known Quicksort algorithm, which chooses a pivot value from a list, moves
each other value into one of two new lists depending on how it compares with the pivot value, and then recursively
sorts each of those new lists. However, the algorithm might choose a pivot that causes all of the other values to end up
in only one of the two new lists, which defeats the purpose of the divide-and-conquer strategy. We call such a pivot a
worst-case pivot.

To try to avoid this problem, we have created our own variant, Kicksort. Someone told us that it is good to use a value in
the middle as a pivot, so our algorithm works as follows:

Kicksort(A): // A is a 0-indexed array with E elements
 If E ≤ 1, return A.
 Otherwise:
 Create empty new lists B and C.
 Choose A[floor((E-1)/2)] as the pivot P.
 For i = 0 to E-1, except for i = floor((E-1)/2):
 If A[i] ≤ P, append it to B.
 Otherwise, append it to C.
 Return the list Kicksort(B) + P + Kicksort(C).

For practice, we are trying Kicksort out on lists that are permutations of the numbers through . Unfortunately, it
looks like Kicksort still has the same problem as Quicksort: it is possible for every pivot to be a worst-case pivot!

For example, consider the list 1 4 3 2 . Kicksort will choose 4 as a pivot, and all of the other values 1 3 2 will
end up in one of the two new lists. Then, when Kicksort is called on that list 1 3 2 , it will choose 3 , and once again,
all of the other values will end up in one of the two new lists. Finally, it will choose 1 from the list 1 2 , and the other
value 2 will of course end up in only one of the two new lists. In every case, the algorithm will choose a worst-case
pivot. (Notice that when Kicksort is called on a list with or elements, it does not choose a pivot at all.)

Please help us investigate this further! Given a permutation of the numbers through , determine whether Kicksort
will choose only worst-case pivots.

Input Specification

The first line of the input gives the number of test cases, . test cases follow; each consists of two lines. The first line
has one integer : the number of elements in the permutation. The second line contains integers , which are a
permutation of the values from through .

Output Specification

Time limit: 1.0s Memory limit: 64M

1 N

0 1

1 N

T T

N N Ai

1 N

https://en.wikipedia.org/wiki/Quicksort

For each test case, output one line containing Case #x: y , where x is the test case number (starting from) and
y is YES if Kicksort will choose only worst-case pivots when sorting this list, or NO otherwise.

Limits

The values are a permutation of the values from to .

Small dataset

Large dataset

Sample Input

4
4
1 4 3 2
4
2 1 3 4
2
2 1
3
1 2 3

Sample Output

Case #1: YES
Case #2: NO
Case #3: YES
Case #4: NO

Sample Case #1 is the one described in the problem statement.

In Sample Case #2, our first pivot will be 1 , which is a worst-case pivot, because it causes all of the other values 2 3

4 to end up in one of the two new lists. However, the Kicksort call on the list 2 3 4 will choose 3 as a pivot. This is
not a worst-case pivot, because it puts 2 in one of the new lists, and 4 in the other.

1

Ai 1 N

1 ≤ T ≤ 32

2 ≤ N ≤ 4

1 ≤ T ≤ 100

2 ≤ N ≤ 10 000

In Sample Case #3, Kicksort will start by choosing the worst-case pivot 2 , and then it has no other pivot choices to
make.

In Sample Case #4, Kicksort will start by choosing 2 , which is not a worst-case pivot.

