Google Code Jam '22 Qualification Round Problem A -Punched Cards

Time limit: 5.0s Memory limit: 1G

A secret team of programmers is plotting to disrupt the programming language landscape and bring punched cards back by introducing a new language called *Punched Card Python* that lets people code in Python using punched cards! Like good disrupters, they are going to launch a viral campaign to promote their new language before even having the design for a prototype. For the campaign, they want to draw punched cards of different sizes in ASCII art.

The ASCII art of a punched card they want to draw is similar to an $R \times C$ matrix without the top-left cell. That means, it has $(R \cdot C) - 1$ cells in total. Each cell is drawn in ASCII art as a period (.) surrounded by dashes (.) above and below, pipes (.) to the left and right, and plus signs (+) for each corner. Adjacent cells share the common characters in the border. Periods (.) are used to align the cells in the top row.

For example, the following is a punched card with R = 3 rows and C = 4 columns:

There are more examples with other sizes in the samples below. Given the integers R and C describing the size of a punched card, print the ASCII art drawing of it as described above.

Input Specification

The first line of the input gives the number of test cases, T. T lines follow, each describing a different test case with two integers R and C: the number of rows and columns of the punched card that must be drawn.

Output Specification

For each test case, output one line containing Case #x: , where x is the test case number (starting from 1). Then, output $(2 \cdot R) + 1$ additional lines with the ASCII art drawing of a punched card with R rows and C columns.

Limits

$1 \leq T \leq 81.$	
$2 \leq R \leq 10.$	
$2 \leq C \leq 10.$	

Sample Input

3			
3 4			
22			
2 3			

Sample Output

Case #1:	
+-+-+	
+-+-+-+	
. . .	
+-+-+-+	
. . .	
+-+-+-+	
Case #2:	
+-+	
+-+-+	
. .	
+-+-+	
Case #3:	
+-+-+	
+-+-+-+	
. .	
+-+-+	

Explanation for Sample

Sample Case #1 is the one described in the problem statement. Sample Cases #2 and #3 are additional examples. Notice that the output for each case contains exactly $R \cdot C + 3$ periods.